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Asymmetric primitive-model electrolytes: Debye-Hickel theory, criticality, and energy bounds

Daniel M. Zuckermart, Michael E. Fisher, and Stefan Bekirafdov
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
(Received 13 November 2000; published 21 June 2001

Debye-Hickel (DH) theory is extended to treat two-component size- and charge-asymmetric primitive
models, focusing primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion diaaneters
larger than the positive ion diameteas . . The treatment highlights the crucial importance of the charge-
unbalanced “border zones” around each ion into which other ions of only one species may penetrate. Exten-
sions of the DH approach that describe the border zones in a physically reasonable way are exadtabdhigh
low densityp and, furthermore, are also in substantial agreement with recent simulation predictiomes s
in the critical parameters,. and p., with increasing size asymmetry. Conversely, the simplest linear asym-
metric DH description, which fails to account for physically expected behavior in the border zones Bt low
can violate a new lower bound on the enefgich applies generally to models asymmetric in both charge
and size. Other theories, including those based on the mean spherical approximation, predict trends in the
critical parameters quite opposite to those established by the simulations.
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I. INTRODUCTION DH theory, when supplemented by Bjerrum ion pair{g
and dipolar-pair solvation in the ionic flui®], remains the
While the values of the critical parameters for the fully most quantitatively successful theory of coexistence and
symmetric hard-sphere model of an electrolytee “re-  criticality in the sizesymmetricRPM [see, e.g.[7(b),10]].
stricted primitive model” or RPM1-3]) have received ex- One might, thus, reasonably hope that a suitable extension of
tensive theoretical attention for a number of ye@ese, e.g., the DH and(DHB]DI [9]) theories to unequal ion sizes will,
[3-10), only recently has interest focused on the effects oftt least, yield corredrendsin the dependence df; andp
asymmetryon phase coexistence and criticaliyl—17. Sa-  On asymmetry. ]
bir, Bhuiyan, and Outhwaitg11] used the mean spherical I fact, in their original 1923 paper, Debye anddel[1]
approximation(MSA) and two different Poisson-Boltzmann alréady claimed to have explicit results for asymmetric
approaches to compute critical parameters resulting fronR/imitive models(see[17]). However, serious flaws in this
both size and charge asymmetry; the reduced critical densitg,'s’tor'C formulaﬂqn suggest other, more systematic exten-
ps was always reported to increase with greater size asym-.IonS of symmetric DH theory appropriate for Ehe asymmet-
o ric case[17]. We analyze these improved “asymmetric
metry,. but thg trends for the reduced cr.|t|'clal temperalifre Debye-Hickel” (ADH) theories by compairing with exact
were inconsistent(For _approprlate definitions of reduced ggries expansions and newly developed bounds, and also as-
temperature and density, s¢#4] and below) Gonzalez-  sess their general physical character. We find, in fact, that,
Tovar used the MSA and found, via the energy route, thagontrary to Refs[11-13, the critical parameters predicted
both T; andp? increasedwith greater size asymmetft2]. by our modified ADH theorie§17] exhibit trends in agree-
Most recently, Raineri, Routh, and Stell also employed thement with those obtained in the recent simulatiph4,15.
MSA, but augmented the analysis by incorporating Bjerrum- In order to focus on the effects of size asymmetry, we
Ebeling-Grigo pairing; they likewise predicted that bdh  confine the present discussion primarily to the two-species
and p¥ increase monotonically with size asymmefd3].  size-asymmetric primitive modébr SAPM), which consists
Recent simulations by Romero-Enrigaeal. [14] (see also of equal numbersN,.=N_, of positive and negative ions
[15]), however, reveal theppositetrends, namely, that criti- with hard-core diametera__=a_ ., and charges of equal
cal temperature and densitiecreasestrongly with increas- magnitudesq, =—q_=*z.qq. (Of course, the comple-
ing size asymmetry. Hence, as remarkedllid], our current mentary case, , >a_ _ follows trivially by symmetry) All
state of even qualitative theoretical understanding appearsaterial and space is assumed to possess a uniform dielectric
less than adequate. constantD. For the most part, we also assume additivity of
The present report therefore formulates and analyzes extameters,
tensions of the Debye-Htitel (DH) approach[1] to asym-
metric primitive model$17]. We may recall that the original a,_=a=3(a,.+a__). (1.1

The degree of asymmetry will be described either by the
*Present address: Department of Physiology, Johns Hopkins Unfractional deviations frona, namely,
versity, School of Medicine, 725 N. Wolfe St., Baltimore,

MD 21205. o,=(a,,—a)la (o=+,—), (1.2
"Present address: Laboratory of Computational Genomics, The
Rockefeller University, New York, NY 10021. or by the diameter ratip14]
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N=a__la,.=(1+56)(1-5_), (1.3

where we have used the fact that=— 5_ for the additive
case. Note that the general asymmetric primitive model elec-
trolyte possesses a large—in fact, three-dimensional—
parameter space: two degrees of freedom for size asymmetry
(since additivity neechot be assumedand one for charge
asymmetry(noting that the overall magnitude is irrelevant

We take the total number density to lpe=N/V with
N=N,+N_) and V the volume. The reduced density is
then appropriately defined Hyt4]

p*=(p.+p_)a’ (1.4

which seems the most relevant parameter since the critical
densities are typically lowp} <0.1. But we note that other
workers have used alternative definitiddd,13. The natu-

ral temperature scale for studying criticallie., low tem- FIG. 1. lllustration of a border zone. The gray subborder zone

peraturepin the SAPM is set by the energy of afttractive  may be occupied only by theentersof + ions sincea, ,<a. _ .
pair of ions at contact, so we take

T*=kgT/(]g.q_|/Da, ). (1.5 bprder zones. While the failure i; not e_ntirely surpris_ing,
since the general DH formulation relies on a high-
It is also convenient to define the reduced electrostatic erfemperature expansion, it does present a sharp contrast to the
ergy, normalized by the energy of closest approach of gymmetric case. One striking consequence of the difficulties

(+, —) pair, namely, is the theory’s violation, at low temperatures, of an extension
of Onsager’s lower bound for thénterna) energy of the
u(p,T=Ux(p,T)/N(]g.q_|/Da), (1.6) RPM [18] that we establish in the Appendix fayeneral

primitive models that are asymmetric in both charge and
whereUR* (=Uy— 3NkgT) is the overall excess energy.  size.

The theoretical description of size-asymmetric models is, It is an interesting fact that analysis of the general primi-
naturally, more complicated than in the symmetric case. Spaive model with nonadditivediameters presents few addi-
cifically, in considering the correlations and fluctuations intional problems in most case$ee, e.g.[16] and references
the neighborhood of a particular igwhich, following DH,  therein) On the other hand, the nonadditive models are po-
we may suppose is fixed at the origirthree distinct sur-  tentially useful in applications because they can represent
rounding spherical shells or zones must be accounted for. Tshort-range interactions beyond the pure Coulombic cou-
see this, suppose first that the selected, fixed ion is positivelings. Thus if, for examplea, . =a__=ag, so that one
and that the diameters are ordered in size accordirey.to  has a sizesymmetriomodel, buta, _>a,, a moment's con-
<a, _<a__: we term this the “inner” case since the like- sideration shows that unlike ions experience a strong short-
like diameter of the central charge is smaller than_ . rangerepulsionrelative to the geometric ion siz&,. This
Trivially, no ion center can enter the “interior” zone<Or competes with the ionic attraction and, thus, for example,
<a,., wherer is the radial distance from the origin; of increases the relative size of a Bjerrum pair and decreases its
course, this applies to the symmetric RPM as well. New tostability. Conversely, the case, <ay can be viewed as
the SAPM, however, is the “border” zonér, more pre- representing an enhanced short-range repulsion betlikeen
cisely, the “subborder” zong a, , <r<a, _ for this “in- ions of a “true” diameter less thaa,. In reality, of course,
ner” scenario, that is shown shaded in Fig. 1: this can behe interactions in ionic systems deviate from pure electro-
populated only by the centers of the smaller, i.e., positivestatics at short distances. Accordingly, although we mainly
ions; the larger negative ions are excluded. Finally, as in théocus below on the additive case, we briefly indicate where
symmetric model, positive and negative ions may be presemecessary how to construct DH theories for the general, non-
in the exterior zone>a_ _ . When a larger negative ion is additive mode[17]. We believe this theory is of interest in
chosen to be at the origin, there is a complementary “superits own right as well as providing a basis for more elaborate
border” zone,a,_<r<a__, into which only positive treatments. Further details of the linear asymmetric DH
charges can penetrate. theory are also given ifil7].

The presence of these “charge-unbalanced” zones in the Because of the failures of the linear asymmetric DH
asymmetric case turns out to play a crucial role which, intheory, we have explored some modifications that, for mod-
particular, means that the simple extension of the DH treatest degrees of asymmetry, ensure satisfaction of the energy
ment(ADH theory), although in agreement in leading orders bound of the Appendix and of thermal convexity require-
at high T with the exact series expansiof3,16,17, fails  ments[10]; these criteria are also satisfied for large asymme-
badly at lower temperatures. This is shown below in Sec. Itry in the critical and coexistence regions. The modified
after we develop the ADH formulation, which allows for the ADH theories accomplish this by specifically allowing for,
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and compensating in a natural way, the charge imbalances The DH procedure then introduces two approximations
induced by the existence of the border zof&g]. These for the average charge densitp,(r)),. The well-known
theories are expounded in Sec. Il and their predictions folPoisson-Boltzmann approximation is followed by a linear-
criticality are examined in Sec. IV. It transpires, as men-ization of the exponential in the Boltzmann factors, yielding
tioned above, that the simplest modified theories appear to be

the first theoretical treatments to predict corre¢ty judged

by the simulationg14,15)) that bothT* and p* fall when (Pa(MN)e = ;_ d.p-exl—BaLb(r),], (2.4
size asymmetry is introduced; however, fora__/a, , Tﬁ'

=4, the critical density displays incorrect, nonmonotonic be-

havior. Finally, Sec. V presents a brief overview and some - 1— r 2
conclusions. 2N a.p[1=BALD(1),], (2.9
Il. ASYMMETRIC DEBYE-HU CKEL THEORY where B=1/kgT. In the size-asymmetric models, the ap-

proximate charge density must be allowed to take a different

form in each of the three distinct zones around the central
In this subsection we present the ADH theory. Since thecharge. Thus, when the fixed charge is positive=(+) one

cost in additional complexity is slight, we consider heaad  has

in the Appendix a general two-species model with point

A. Formulation of the theory

chargesq,=2z,q0 (0=+,—) centered in hard spheres of (pg(r))+=0q48(r) for r<a,., (2.6
diametersa,, with the collision diameters,,, restricted

only by a, ,<a=a,_<a__. The Debye-Hukel proce- _ _

dur)é [1)]/, interpreted generally, directs oyne to calgulate the =0eps[1-Aa:($(r).]

excess thermodynamic functions, based on approximations for a, <r<a, (2.7
for the correlation functions that are then integrated via the

“energy route” [19]. Specifically, defining/, to be the av- 2_(K%/4W)<¢(r)>+ for r>a, 2.9

erage electrostatic potential atfaed) ion of speciesr due

to all other ions, the reduced electrostatic energy, defined in ) .
Eq. (1.6), is given by where, as usudll9], overall electroneutrality has been im-

posed. Here, the inverse Debye length is defined in the stan-
o) 2.1 dard way via
l//+ —¢¥7), 2.1

U 2z —2)q

2_y2 _ 22 2
where the superscripts and> merely serve as reminders of (kpa)"=xp=(4ma qO/DkBT); Pole: 2.9
the relative ion sizes, and also facilitate formulation of the

nonadditive case. Other thermodynamic quantities, such Note: (i) there is no approximation in the innermost exclu-

the free energy and pressure, follow in principle after SUitgion zone (<a..): (i) the subborder zonea(, , <r<a

able integrations and differentiations. We derive an explicit_ a. ) can contain none of the larger negative ions so that

closed-form expression for the internal energy as a functiorﬂq Eq. (2.7), which represents the fundamental extension of

of T andp, and the second virial term for the pressure is alsothe original DH theory, onlyq. appears on the right-hand

discussed. . .
i . . . side; and(iii) the exterior zoner(>a) follows the standard
_We begln the calcqlatlon of the lon potenpaﬂg(T,p) by Debye-Huckel form as in the syEnm)etric RPM,19|.
flxmg an ion of Speciesr at t_he origin, as in Fig. 1. The The approximation§2.6)—(2.8) complete the reduction of
induced elegtrostatlc potentiakp(r), and corresponding o averaged Poisson equati@h?) to the basic ADH equa-
charge densityp,(r), are then related by th@xact aver-  yion for 4 + ion. This may be solved for four unknown
agedPoisson equation, namely, coefficients using standard electrostatic boundary conditions
. (continuity of p andd¢/or) atr=a, . andr=a, _=a with
V2<¢>(r))q=—3(pq(r))”, 22  ¢(r)—0 asr—x [19] from which ¢ follows via Eq.
(2.3). The closed forms for the electrostatic energy in the
o ADH approximation then result from combining the general
where the SUbSCI’lth’ indicates that the averages are per-expression for the energﬁ_l) with the appropriate expres-

formed with a charge of speciesat the origin[19]. The ion  sjons for they,, potentials, which are presented below. If we
potentials follow from the limit introduce

. 4. — _ 1/2
bo(Top)= nm[<¢><r)>g— a}' 23 b=zl (2 =2 )1 219
r—0
one finds that the potential in the “inner” scenario, with a
which eliminates the self-interaction of the fixed charge atsmaller central positive iofindicated by the superscript),
the origin. may be written as
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¥5 (Ao T,pi{ze} {5,})

z z_ 1z, |T*(AT+AS+A;)—B~
_ +do) | +] 1 _ 2 3 ' (2.1
Da C
where the various contributions are
AT =(1+Xp+Xpd,)[coshf,xpd,)—1], (2.12
AS=— (60140, xp+ 0.xp8,)sinh( 6, Xpb,),
(2.13
A3 =xpd,, (2.14
B==Xp cosh{ 8, Xp8.)— 0. Xp Sinh(0,Xp6,),
(2.15
C=(1+Xxp+Xpd.)coshi ., Xpd,)
—0.(0,%+xp+Xpd,)sinh(6,Xp5,). (2.1

Note thats, <O for this < case. TheA;; terms ofy~ have
been grouped so that each vanishes individually when
—0; in this limit of size symmetry, furthermore, the poten-
tial reduces to the standard DH res{it3,19 for a size-
symmetric primitive model, namely,

Yi=1,=—(2:0do/Da)xp/(1+Xp).
When the diameter of the negative ion is less tlarmne
should simply switch the species subscripts in &j11).

For the “outer” situation, with a larger central iofindi-
cated by superscript), the corresponding result is

(Ao T,p:{20}{6,))

z_ T*(A] +A, +A;)+B~
_ 1z_|ao 1 2> 3 , 217
Da C
where the contributions are now
A7 =(1+xp)[cosh,xp5_)—1], (2.18
A; =071+ 60, xp)SinN 0, xp6_), (2.19
AT =-xpd_, (2.20
B~ =Xp cosi{ 8, Xpd_)+ 0, Xp Sinh( 6, Xp6_),
(2.21
C”=(1+xp)cosh 6, xp5_)
+(607+ 0, xp)sin 6, xp8-). (2.22
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< | %% s Z%
Yy (T=0)= Da/1+4, and ¢, (T=0)= Da’
(2.23

which are independent of density. Furthermore, small diam-
etersa are of interest; bug; divergesfor “point” ions, i.e.,

in the limit a,,—0 (or §,— —1). This, in fact, serves as a
warning sign, as will be seen below.

B. Assessment of ADH theory

We now examine the predictions of the linear ADH
theory. Following Debye and Hkel[1,19], the free energy
is to be obtained from the internal energy in Eg.1) by
employing the Debye charging procgsghich is equivalent
to using the standard thermodynamic relation for the free
energy in terms of the energyThis yields the reduced ex-
cess free energy density as

TX(T,pi{z,} 8,0 =— ATV T)/IVkgT,
_ Kb
Amgo(z.—2-)

1
fo delyT(a0) — ¥~ (o). (2.24

whereAR is the total excess Helmholtz free energy. It must
be recalled that in addition to the explicit dependencegn
(and, hence, o) entering Eq.(2.1) via Egs.(2.11) and
(2.17, an implicit dependence occurs vig xq, that enters
Egs.(2.12—(2.16 and(2.18—(2.22.

Except in the standard symmetric ca@e=0, 6, =45_
=0) most of the integrals involved in ER.24) seem intrac-
table. Nevertheless, one may derive an expansion for the free
energy, and thence for all other thermodynamic quantities,
such as the pressure, by expanding the expressind)—
(2.22 and integrating term by term. By this route, we can
check the theory against exactly known expansises, e.g.,
[3,16,17).

Thus, consider the low-density/high-temperature expan-
sion for the general primitive modélith arbitrary charges
d,=Z,00 and diameters,,,) which is known to overall or-

derp®?in the density. On specializing to the two-component

case, this may be written as

[

(T,p)= /127 + Bl p?In(kpa)/ T3+ p2 >, By, /T*"
: 2. B2,

(2.29

where we again recalkpa=xpx \/p_* The leading term
here varies ap®? and represents the DH limiting law repro-
duced by all sensible approximations. The coefficiBat
derives from the second virial coefficient for a pure hard-
sphere gas. At the present level of approximation, this may
be accounted for precisely by including the hard-ci€)

+0[p*?In(xpa)],

Naturally, s~ also reduces to the symmetric DH result whenfree energy densityf™C, in the basic approximatiof®]. The

6_—0.(If a, .>a__, one should simply switch the and
— subscripts.

For future reference, notice that both; and ¢~ have
readily calculated zero-temperature limits, namely,

remaining  coefficients B,;, B, o, B;3, B3 Boy, ..
arise from the electrostatic interactions.

Now, DH-based approximationn common with the
MSA, etc) cannot generate the?(In p)/T2 term with coef-
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It is, indeed, striking that the exact leading-order depen-
dences in powers of T/are reproduced for arbitrary diam-
eters,a,,, a,_, anda__ (including nonadditivity and
point charges However, one probably should not be so sur-
prised since the arguments leading to the basic ADH equa-
tions, Eq.(2.2) with Egs.(2.4) and (2.5 are, on reflection,
clearly valid to leading orders ip and 1T even if it is not
obvious how far the validity will go.

To study the ADH theory more quantitatively, we focus
on the energy for the additive 1:1 case,&E—-z_=1). No
integrations are then required. Figure 2 displays energy iso-
chores as functions of* at high and low temperatures for
degrees of asymmetry=a__/a, =1 (the RPM for ref-
erence, solid curves2, 4, and 6. These values &fcorre-
spond to size deviationss, |=6_=0, 3, £, and 2, respec-
tively. It is evident that ADH theory predicts that size-
asymmetry lowers the electrostatic energy, with the effects
being greatest at the highest and lowest temperatures. At
intermediateT the predictions for varying. are grouped to-
gether according to density.

Notable features of the highplots of Fig. Za) are, first,
that the finite values af attained whem — oo are exact. This
can be verified by a simple priori calculation; alternatively,
the values may be checked from the exact-opdéT term as
displayed in Egs(2.295 and (2.26 that is correctly repro-
duced by ADH theory. The limiting slopes at* =« are
discussed further in Ref17].

The behavior ofi(T,p) at low temperatures proves, how-
ever, much less satisfactory. From FigbPone sees that the
energy is predicted to fall increasingly rapidly for increasing
asymmetry whef falls, passing well below the ground-state
predictionu= — 3 of the symmetric DH theory; but see also

-1 - . . L : [10] for the DHBJ|DI extensiong9]. Most seriously, how-
0 0.2 04 0.6 0.8 1 ever, for large enough asymmetry, the energy drops below
’ ) N ) ) the 1:1 size-asymmetric lower bound, nameiy; — 1, estab-

lished in the Appendixwhich also treats general andz_).

FIG. 2. Effects of size asymmetry on high- and Iow-temperature'vIore concretely, the ground states predicted by ADH theory

energy isochores, according to the linear ADH theory for a 1:1follow from Egs.(2.1) and(2.23 which yield

primitive model. For each density, the RPM isochof@sth \ ADH .

=a__/a,,=1) are shown as solid curves. The associated, succes- u™(T=0;N)=—3(3+N). (2.28

sively lower plots correspond =2 (dashed, 4 (dot-dashef] and

6 (dotted, forp* =0.1 only). The density-dependerf? —c limit- This expression evidently violates the bound when5 (or

ing values areexact (The near-agreement between two of the |5+|=57>§).

curves afT* = is a coincidence. Of course, this is unacceptable, but even for smaller val-
ues of\ this behavior casts doubt on the value of the ap-

ficient 823. However, our linear ADH theory yields the ex- Proximation at lowT in the vicinity of the expected critical

act leading coefficients in orderTLand 172, Explicitly we region. The origin of this behavior can be understood physi-
find cally by examining the ADH predictions for the mean total

charge, sayQ;, within the subborder zona, ,<r<a, _

=a that can only be penetrated by like, i.e., positive charges.
}, (2.2  Recalling the notations in Eq2.2) and the approximations

(2.4—(2.8), the theory yields

5. (24+6.)+6._(2+6.)
(z,—2_)*

By1=mag|z, 2|

which vanishes for the size-symmetric modelisth 5,=0), ar-

++

a

82'2: - 7Tag 1+

227 =" dra.pi-paemn)] @29

ag 4

28, +7% 5_}
(zy—z)° |
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where the precise form dfp(r)), follows from the explicit Clearly, the serious physical defects of the ADH treat-
solution of Eq.(2.2) with Egs.(2.6)—(2.8) [17]. Now, when  ment must be rectified if the theory is to have any value for
T—w the approximation becomes exact, yieldir@: T*=<1: and, we expecfl; <0.1[7-13. Before addressing
=q,p. V", whereV==%m(a3_—a3,) is the volume of that task, however, we present, briefly, the original claims of
the subborder zonesee Fig. 1 At finite but large tempera- Debye and Hakel[1] as regards a system of ions with arbi-
tures, Eq(2.29 correctly predicts the linear decreaseQ@f trary diameters.
with B as the(+,+) repulsions come into play. Of course,
the repulsions become increasingly effectiveTadecreases
so that, at lowT, one expect® to remain positive but to be C. Original DH theory
of magnitude onlyV=q,p. exp(— 2/Da+, (although, o i o
becauge, of the nggatglepscreglginlz]qéloud tf)1at buildsgup for I their original 1923 paper, Debye and ¢kel[1] did, in
r>a,_, this estimate might need to be modified some-faCt' _dl_scuss the case of an “arbltrary_lonlc solution”—that
whab. is, W|th|.n the_model they adopted, a mixture of hard-spheres
However, if one neglects the screening, the mean poterff varying diametersa,, and chargesy,, or the general
tial ($(r)). in Eq.(2.29 will be of order+q, /Da, , or  Primitive model. However, in their analysis no mention is
larger, in the subborder zone. Then Talls and8— = it is m_ade of the border_zones in which charges of onl_y species
evident that Eq.(2.29 is likely to predict, first, a totally With Small enough diameters can be preséiote that in the
unphysicalnegativevalue forQ? (even thougmo negative mul'uspeues case there will, in general, be a num_ben‘mf
charges can enter the subborder 2cad, eventually, a di- tinct bprder Zones ground eqch chajgRather, thglr argu-
vergence ofQ to —o. Explicit calculationd 17] fully bear ment is presenteds if a_II Species were Of. theamediameter
this out. For example, when—2, andp* —0.01, one finds [1,17]. The mathe_matlcs is then !Qentlcal to that for the
negativeQ~ for T* 0.9; for p* = 0.1 (= p?) the change of RPM. In our notation, Debye and ldkel thus present the

sign is delayed untill* =0.6 but the divergence te-« is conclusion

more rapid. Since the ADH theory for the border zones

embodied in Eqs(2.5), (2.7), and (2.29 reflects ahigh-T " :_(Zo%
expansion, the problems at loWshould not be a great sur- 7 D
prise. On the other hand, the successes of the original DH

theory for the symmetric case at Iolv(e.g.,[9,10)) clearly

hinge on the absence of any “charge-unbalanced” bordefi.e., precisely the RPM result whexy,=a). The equivalent
zones. free energy for a 1:1 model is then

Kp

(2.30

1+ KDao.o.'

2014 (14 8)Xp] +[(1+8,:)Xp]? = 2(1+ 8. )%p 2 IN[1+(1+6_)xp]+[(1+6_)Xp]?—2(1+6_)Xp
- 16m(1+0,)° * 16m(1+ 0.3 !
(2.30)

a.31:DH

from which predictions for criticality, etc., follow: see pathological lowT behavior that included violations of the
below. lower bound on the internal enerdggee Appendix In the
Neglecting all the border zones spares this “original DH” following section, we examine the predictions of these modi-
theory the pathology of our ADH theory, but seriously re-fied ADH theories for the critical parametetmcluding a
duces the plausibility of their treatment for size-asymmetriccomparison with the original, 1923 DH proposal for asym-
models. Thus, not so surprisingly, the highew-p expan- metric systems
sions of the thermodynamics resulting from E2.32) differ
at the first correction to the limiting behavior—s8g, in

Eqg. (2.26—from the exact results captured by our ADH A. Introduction of border zone factors

theory; indeed, the former depends only on the radfp It is clear from the previous considerations of the ADH
% p/T, while the exact results are more complex. prediction(2.29 for the chargeQ? in a subborder zone, that
the standard DH linearization of the Poisson-Boltzmann ex-
Ill. MODIFIED ASYMMETRIC DH THEORY ponential is generally inadequate in any zone where the

mean charge is necessarily unbalanced because of strongly
We now discuss a class of modifications of ADH theoryrepulsive short-range, steric repulsions. As an alternative first
(originally introduced in[17]) which avoid the unphysical step, that will still yield an analytically tractable theory, we
behavior of the charge density in the border zones: this beforego the self-consistent aspect of the Poisson-Boltzmann
havior was identified in Sec. Il B above as a root cause of the@pproximation(2.4) in the border zones and consider replac-
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ing the self-consistently determined electrostatic potential B. Choice of zone factors
(¢(r)). by a fixed but pos_sltgrly temperature- and density-  yngoubtedly the simplest reasonable approximation for
dependent effective potentid,(r;T,p). o the zone factors is provided by taking
One possibility is merely to use thmare potential, i.e., to
put ¢! =q,/Dr. The right-hand side of Eq2.7) would then MF: FS(T)=F(T)=1 (3.7

readq, p, exp(—Bq>/Dr); but an obvious drawback of such

an approximation is that the resulting closure of Poisson’or, equivalently, by dropping the term linear ®in Egs.
equation(2.2) is no longer readily solvable. Instead, we sim- (2.5) and(2.7). The results will fail to reproduce the correct
plify further by neglecting the-dependence o . Thus we B, coefficient in Eq.(2.27, although the exacB,; term
introduce temperature-dependéotder zone factors <(T) will be generated. Physically, this approximation amounts to

and F~(T) and consider the replacement of §.7) for a @ direct mean-field or van der Waals type approach in which
subborder zone by the effects on the internal energy of thE=f o) unbalanced

_ _ zone chargeQ<=q.p. V= andQ-=q_p_V~ (whereV=
(pg(1)+=pq(r;T,p)=0q,p  F~(T), a,,<r<a. (3.)  andV~ are the zone volumgsare accounted for in a direct
. . L way that neglects fluctuations. The zone charges remain fi-
Likewise, for a superborder zormdicated, as before, by the pjte and, in fact,fixed for all T: but, at least for small
superscript>) we advance relative zone volumed/~/a®=4x48,(1+46.) and V=/a3
— . - =475_(1+ 6_), one might reasonably expect that the ini-
N)_=pg(r;T,p)= F(T), a<r<a__. (3.2 . . > ;
{Pq(r)) Pq PI=0:p+F(T) 3.2 tial thermodynamic trends with increasing asymmelry

The calculation of they,, potentials now proceeds just as =a--/a. ., for smallx, will be correctly predicted.
in Sec. Il but the results take a simpler form, which we A second natural step, following our initial discussion, is
distinguish by using a circumflex. Maintaining our conven-to takeg'(r) to be the direct potentiatj,,/Dr, evaluated at
tion of a smaller positive iond. <0) and larger negative the mean radiusof the border zones, namely; =3(a, .
ion (5_>0), we find +a)=(1+36,)a andr =(1+36_)a. This amounts to
adopting the exponential form
|z |T*6, F=(T)

~<c 2400 Xp «
D 2(z.-z)) EXP<: F<(T)=exd—pBq>/Da(l+%1s.)], (3.9

* Da 1+Xp

X[2+ 5+—XD(5++%52+)]]7 (3.3  for the inner zone and similarly faF~(T) but with the ex-
ponent

z, T*6_F(T) y“=+p8q,q_/Da(l+35_). (3.9

A>__Z—q0 Xo X
D 2(z,-z.)

- Da 1+xp

It is encouraging that these choices precisely satisfy Egs.
X[2+6_+xp(6_ +§52_)]]_ (3.9 (3.5 and(3.6) and so reproducboth B, ; andB; .

As regards the subborder zone where, as discussed in Sec.
I1B, one expect;(T,p) to vanish at lowT (or, at least,
approach very small valugsthe assignment3.8) seems
rather satisfactory. Indeed, combining E8.1) and the first
part of Eq.(2.29 shows thatQ= will remain positive but
lecrease exponentially rapidly as tl{e-,+) repulsions
flush out” charge from the subborder zone.
" It is worth pointing out that the exponential treatment of
the subborder zone can be extended within the DH self-
consistent spirit by linearizing the Poisson-Boltzmann factor
in Eq. (2.5 about the central value of the direct potential in
the subborder zone. Thus, ¥y~ denotes the exponent in

Eq.(3.8), whiley=8q.{4(r)), , one may replace Eq2.7)

These modified potentials, valid for genefdIT), reproduce
the symmetric DH theory whef,— 0, and always generate
the standard limiting laws whem—0. For large Xp
*(p/T)Y?, these approximations for they, behave as
x%T]—“, whereas the standard DH expressions approach cof,
stants. While the consequences of this fact are not obvious
some numerical results are discussed in Sec. Il C, below.

On the other hand, both of the highsecond-virial terms
B, andB,, that are correctly generated by the ADH theory
[see Egs(2.26) and (2.27)], will be reproduced now if the
zone factors satisfy

F<T=1 |z, 1z_| ( 1 ) a5 by
s, Ol : .
T (1+20,) (pq(r))+=dsp.€Y=0qsp,e7” e v
1 1
]—">T=1+—+O( *). 3.6 - Y1 (v— v
D=1+ 15, Ol 3.6 dipee Y [1-(y=y9)l. (310

In principle, 7= and F~ could be chosen to generate further The overall factore Y~ should now ensure the sensible be-
exact second-virial terms; but such an approach does ndwavior of the subborder zone char@; while the linear
seem of much practical value. factory=(pq(r)). accounts self-consistently for some fluc-
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tuation effects while still allowing integration of the closed 0 T T T T
ADH equations. We have not, however, examined this ap-
proach further.

In the superborder zone case, however, matters are sic
nificantly different. Certainly, as follows from E¢3.6), one
expects the mean border-zone cha@e(T,p), which will
be positive forT=<, to increase initially whef falls. This
is simply because the Boltzmann factor enhances the attrac
tions between the larger, central negative ion and the smalle
positive ions. Nevertheless, the growth @ cannot con-
tinue indefinitely as would be implied by adopting the EXP
form with Eq. (3.9 for 7. Regardless of other effects, the
hard cores of thet- ions must limit the number that can be
packed into a superborder zone at ahiyhenceQ~ must
saturate This effect may be incorporated into the present
framework via a saturation fractionf, =s, which pre-
scribes the limitingT— 0 superborder zone charge density as
sq.p. ; recall Eq.(3.2). A plausible zone factor is then the
“regulated” exponential form

FIG. 3. Effects of size asymmetry on the low-temperature en-
ergy isochores, according to the simplest “mean-field” modifica-

sy tion of ADH theory for a 1:1 primitive model at densitigs*
REGEXP: F (T)= ——, (3.11 =0.01, 0.03, and 0.1 and size asymmetnes1 (the RPM solid
e” —1+s curves,\ =2, dashed, andl =4, dot-dashed curves.

with c=s/(s—1), which satisfies Eq.3.6) and approaches
for largey~ (i.e., low T). In the limit s—1 (no growth in
Q) this reduces simply to the mean-field fo®.7).

The difficulty in utilizing this proposal, however, is to
know what saturation valuest0) is appropriate. At lowr,
considerations of ion association indicate that the predicted C. Behavior of energy isochores
saturation charge in the superzone, namely,

unphysical(especially when the diameters are nonaddijtive
we will not discuss the algebraic forn{8.13 (or EXP”)
further here.

Before examining the predictions of the modified ADH
5 (1+6 +162) f[heories for criticality, it is instruptivg to examine energy '
- i p*s isochores, such as those plotted in Fig. 3, for several densi-
1+|z, /z_| e ties near the critical value: compare with the results for the
(3.12  simple ADH theory in Fig. &) but note the difference in
. vertical scales. At temperatures in the coexistence region
should not exceed the neutralizing valige |=|z_|q,. To (T*=0.2) and for modest degrees of asymmetry (

meet this condition requires«1l/p. While a density- _, ) e
dependens and, hence~, can be accommodated without ;n?(,i ti)e’ Ec;gl\t/lhlixg: ?hicz:]; C[’Jfrfgrzc}ﬁidh% que(e?,rf)r]e-

changing Eq(3.4), the subsequent expressions for the free . . .
energy become more complex. Furthermore, wpénin- placed by Eq(3.8)] predict that the internal energiycreases

. above the RPM value with increasing asymmetry. This re-
creasess must decrease and may even fadllow unity. In g asy y

; . . duction in thermodynamic stability suggests, as we will con-
these circumstances and in the absence of other effectlvfﬁm that the predicted values 3% fall as\ increases
H C -

s ona we beleve 1 Is approprate 10 296D IS \We aiso find that the MF-ADH and EXIMF~ADH
o , 922 theories do, indeed, satisfy the energy bounds of the Appen-

W'Ill not thep be correctly reproduced. dix for all (p, T) states relevant to the critical and coexistence
n passing we mention, nonetheless, that we have alsg

) regions in the additive case. Bound violations can occur, but
exploredalgebraic forms that respect Eq3.6) [20]. As an . ) o
example, one can consider these arise only at the highest densitigd 1) and when

the asymmetry is great\&1). While this behavior under-
F(T)=(1+y)/[1+(y”1s)?]", (3.13  mines the two modified ADH theories investigated as overall
descriptions of the asymmetric primitive model, the patholo-
which saturates af~ =s (not necessarily greater than upity gies occur far from the critical region and at unphysically
when v=3 but decays to 0 at loW whenv>3. Fors=2 large asymmetry levels.
such approximations have an added, unexpected feature, For moderate to large asymmetry and high density, how-
namely, they tend to predict an additional asymmetric criticakever, we find that the MF-ADH and EXAMMF~ADH isoch-
point at higher densities that does not smoothly connect tores exhibithonmonotonidehavior inT, indicating a ther-
the standard DH critical poif®] when\ — 0. While, owing  modynamic instability as previously found in a variety of
to the strong short-range interactions implicit in the asym-4on-pairing theories[10]. For both the MF-ADH and
metric systems, such extra critical points are not obvioushEXP~MF~ADH theories, these convexity violations occur

QZ=V7a,p s=4mqg
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for additive models §_=—65.), roughly, only whens_ 0.01
+p*=1. No convexity violations are found far<2 at any

physical density(recalling the packing limjt this confirms

the view that the present theories are of greatest validity for 0.008
modest asymmetries.

IV. PREDICTIONS FOR CRITICAL PARAMETERS

The discussions presented above of the various propose 0.004
modifications of the asymmetric DH theory indicate that the
simpler versions should provide a reasonable basis for fur- (ii)
ther exploration, at least in the case of small size asymme: ().002 t 1
tries. Accordingly, we present here, first, by way of calibra-
tion, the predictions of(i) the original, 1923 DH theory . )
embodied in Eq(2.3D; (ii) the MF-ADH theory that uses 0 ' '
the simple, mean-field border-zone factsr); and(iii ) the .
EXP=MF~ADH theory that retains the mean-field treatment 0.1
for the superborder zones but recognizes, via B@), the
decrease in subborder zone charge resulting from the
Boltzmann-factor-enhanced like-charge repulsions. 0.08

The predictions foil; (\) andpy (\) for a 1:1 electrolyte
are embodied in Fig. 4. The asymmetry variakbg\) 0.06
=(1-M\)2(1+)\? is convenient[14] since it respects the T :
symmetryh < 1/A. Note thatw(2)=0.20, »(3)=0.40, and ¢
w(4.79)=0.60, while the point charge limit\(=c) gives 0.04
w=1.

In Fig. 4 no hard-core terms have been included in the
free energy[9]. Thus for the RPM(A=1, w=0) one has 0.02
T*PH= 1£=0.0625 [7,9], which may be compared with
simulation estimates yielding} =0.049 (see[7]). The DH 0 . . \ .
prediction for the critical density is very low, namely,
pEPH=1/647=0.00497 [9]; however, this increases to 0 02 04 s 0'62 0.8 1
around p* =0.03 when Bjerrum ion pairing is introduced (1-A)/(1+A)

[7,9]. Inclusion of hard-core effects, say, via a Carnahan-

Starling form, reduces all these parameters by a few percent FIG. 4. Critical temperature and density predictions for a 1:1
[9]—and the same is expected to happen for the ADH-baseglectrolyte with additive hard-sphere interactions as a function of
theories. the size asymmetry variable(\)=(1—\)?%/(1+\?), which in-

We note immediately from Fig. 4 that the original DH C'€ases Tonotonigally with=a__/a, . The reduced parameters
theory (i) predicts that bottT* (\) and p* (\) rise rapidly ~ Pc @ndTc are defined via Eqs1.4) and(1.5): (i) represents the
with \. These are precisely the trends found by the MSA1923 D.H the.c.’ry’ \.Nh'le mOd.'f'Cat'ons of asymmeL”C DH iheory are
(using the energy rout¢12] and by the MSA with Bjerrum- e..r.nbO(.j'ﬁd 'n("l) with mefan'f'em fagto[)s fgr botlF = and 7=, an<d
Ebeling-Grigo pairing [13]. The modified Poisson- (i) with a BO. tzmann- a>ctor (Ex_ ) border zone ffCt.or fOﬂ..—

L . , . . and a mean-field factaF~. The circles denote th&; simulation
Boltzmann approxmgﬂons_ dfL1] likewise predlct. thatf:c estimates of Romero-Enriqut al. [14].
increases(See also Fig. 3 ifi14].) In these approximations,
however, the initial\ =1 values are well known to be sig- ) ) .
nificantly higher[T* (1)=0.08, p* (1)=0.015 to 0.0 nev-  Of the simulationgbeyond\ =6) suggests, roughlyl; (=)
ertheless, the proportionate rate of increases are roughfy0-022 andpg (2)=0.015[14].
comparable. In the case of the EXPMF~ADH theory (iii ), however,

By contrast, both of the modified ADH theories predict awhile T (\) falls monotonically to about 0.053 whek
strongdecreasén T andp} when\ increases from unity: —oo, the critical density undergoes a shallow minimum
see plots(ii) and (iii). Furthermore, these decreases are inaround A\=1.8 and then rises. Insofar as the simulations
accord with the simulationgl4,15 (which, however, start seem trustworthy, and exhibit plots that curdewnwards
from T3 (1)=0.049 andp; (1)=0.07) and the relative rates (i.e., are concavevs w(\), it is surprising that the use of the
of fall are quite comparable. For the MF-ADH thedii) the  EXP~ choice forF = leads to apparently inferior predictions.
critical temperature decreases monotonically and we fingndeed, ora priori theoretical grounds, the latter would seem
Te(A=2)=0.049 in the point charge limita(..—0),  superior to the MF assignmefit==1. We emphasize again,
while p. exhibits a shallow minimum at=4 and then in- therefore, that various steps in our analysis appear most
creases tpg (A =2)=0.006. By comparison, extrapolation soundly based wheR is not too large.

(iii)
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For completeness, we report that the MF-ADH andbounds are no longer violated in the critical region and be-
EXP“MF~ADH theories predict that the critical ratid,  yond) The simplest such modification amounts to a mean-
=p./pckgT falls monotonically witha from 0.09036 atn  field approach in which the Poisson-Boltzmann factors in the
=1 [9], while the original DH theorySec. 11 Q predicts a border zonegonly) are merely replaced by thelr=o lim-
fall of just a few percent followed, fox =2, by a monotonic its, namely, unity. For a subborder zon@round a
rise. Inclusion of hard-core terms in the free-energy increasesmaller + ion) a theoretically preferable approach, dubbed
these valuegby about 7% but otherwise the behavior re- EXP~, replaces the self-consistent Poisson-Boltzmann factor
mains similar. by a mean bare-interaction Boltzmann fadtor, better, lin-
earizes about such a mean value: see (Bd.0]. A corre-
sponding exponential treatment of the superborder zone
(around a negative igrmproves, however, more problematic

We have extended Debye-ekel (DH) theory to asym- 0wing to physically crucial charge-saturation effects that are
metric two-component hard-sphere electrolyties, “primi- hard to elucidate in a precise way. One may expect that both
tive models”) and computed the predicted critical tempera-the mean-field and EXP modifications of linear ADH
tures and densities. We also have derived, in the Appendix, #€ory are most reliable at small degrees of asymmetry.
lower bound on the internal energy that extends Onsager's To explore the consequences of the simplest modified
bound[18] and depends only on the valence produgtz_ | mean-field and EXPADH theories(just sketcheplwe have
and the unlike “collision diametera, _ . In order to extend computed the predicted critical parameters as a function of
the original DH theonf1] (based on the Poisson-Boltzmann the size-asymmetrx for 1:1 electrolytegwith additive in-
equation to the case of size-asymmetric ions with, say,teractionsa,_=3(a,,+a__)]: see Fig. 4. As\ increases
a__>a, ., we have identified “border zones” around ions from unity, the predicteds (\) and pf (\) fall systemati-
of both species, which prove to be of essential importancecally within both of these modified ADH theorigsSee Egs.
These zones aharge-unbalancedven at infinite tempera- (1.4) and (1.5 for definitions of the reduced uniisThese
ture because the largémegative ions are geometrically ex- decreases accord well with recent simulati¢fg,15. On
cluded while the smallepositive ions may always enter: the other hand, an original proposal by Debye andkeliin
see Fig. 1. 1923, that completely ignores the border zoriese Sec.

DH extensions that describe the border zones in a physHI C), predicts diametricallyoppositetrends. Furthermore,
cal way (Sec. lll) prove successful in matching trends—as current, more sophisticated theor[@®,13 make similarpre-
determined by two independent simulation studile$ 15—  dictions of increasingl; and p} (in addition to yielding
in the critical temperature and density with increasing sizeexcessively large values @ for the RPM[7,9]).
asymmetry(see Fig. 4 and Sec. )VThis contrasts favorably ~ We conclude that DH-based theories seem to extract the
with other theories, including several based on the meabasic physics in a quantitatively more reliable wigg9],
spherical approximatiofl 1-13, which predict trends oppo- even for size-asymmetric systems, than do potentially better,
site to those revealed unequivocally by the simulations.  but physically less transparent approaches like the MSA. It is

The existence of the zones complicates the theory in astill necessary, howevdrl0], to incorporate Bjerrum ion-
essential way; however, the usual DH approach can be exairing and dipole-ion solvatiof9] into the modified ADH
tended straightforwardly and yields explicit approximationstheories expounded heréThis will also increase the pre-
for the internal energyand, thence, results for other thermo- dicted critical densities to better match the anticipated val-
dynamic propertigs This asymmetric DHor ADH) theory  ues) It is not obvious that the correct trends with asymmetry
reproduces the limiting laws and provides the exact high{accepting the validity of the simulatioi¢4,15) will sur-
temperature second-virial coefficienBs, ; andB, ,[see Egs.  vive these extensions: it seems likely, nonetheless, that the

V. SUMMARY AND CONCLUSIONS

(2.29—(2.27)], down to the point-ion limit. proper dependence on asymmetry will be presefesdsug-
However, in contrast to the standard DH theory for thegested, e.g., by comparing the resultd b2] and[13]).
symmetric restricted primitive modelRPM) with \ From a broader perspective, it remains frustrating that

=a__/a, =1, the straightforward ADH theory violates more powerful and definitive theoretical techniques have not
the (extendedl lower bound on the internal energy in the yet been devised to aid in our understanding of such a fun-
coexistence region wheR>5. Even more seriously, for damental and significant model for condensed matter.
moderate asymmetries and moderate temperatures, the mean
charge in a “subborder” zon&hat surrounds-aion) is pre-
dicted tochange sigrand, at lowT, to diverge; but, by con-
struction of the model, such behavior is physically impos- We appreciate the interest, encouragement, and comments
sible. This pathology is readily traced to use of the standar@f Professor Benjamin P. Vollmayr-Lee, Professor Elliot
DH linearization of the Boltzmann factor within the border Lieb, and Professor A. Z. Panagiotopoulos. We are indebted
zones: see Sec. |IB. Modifications of the ADH theory areto Dr. S. Banerjee who pointed out an oversight in the Ap-
thus essential for applications at |0 pendix. Professor Katharina Vollmayr-Lee generously trans-
As shown in Sec. lll, one may restore physically sensibldated sections of1] related to the present work, and Dr.
behavior while retaining the exact highbehavior by intro-  Banerjee and Young C. Kim kindly commented on a draft
ducing “border-zone factors,”F~(T) and F (T), origi- typescript. The bulk of the research reported here was sup-
nally proposed in17]. (This also ensures that the energy ported by the National Science Foundatiamder Grants
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= self
APPENDIX: ENERGY BOUNDS FOR THE TWO-SPECIES 2 i Z U (A4)

PRIMITIVE MODEL o _ _ o
This inequality holds foarbitrary charge distributions obey-

We here generalize the Onsager bound for the RE81  ing the restrictions stated above; different distributions, of
to the general two-component hard-sphere model defined igourse, lead to different values of*". To obtain the stron-
Sec. Il and also develop a@pparently newlower bound  gest bound, we mushinimizethe magnitudes of the self
that improves on the simple Onsager result. energies. This is accomplished by dispersing the ionic charge

The quantity to be bounded is thmteractionenergy of as much as possible, namely, by placing it in a thin shell on
the ions,U™. Defining the interionic distancesg; and inter-  the surface of the largest permissible sphe diameter
action potentials, a™®). Considering a vanishingly thin shell, the minimal self

energy is thus

=i /DI Al)
@ij = qiq; ij ( min{uiself}:in/Daimax_ (A5)

wheregq; is the charge on thgh ion, one has i )
For the symmetric RPM, the equality of charges,
it =—(g_=q, and of sizesa"*=a, =a, immediately leads
U ZE Pij - (A2)  to the original Onsager bourgf/Da. In the case of nonad-

= ditivity, however, one must avoid overlapping charge distri-

By adopting the ¥/; form in Eq.(A1), we implicitly assume butions from distinct ions, so that

that the charg_e densities between any twc_) i(_)ns are spheri— a™=min{a, _,a; 1. (A6)
cally symmetric and never overlap. To avoid irrelevant sin-
gularities, we further assume that the charge density is ev- We now formulate the explicit Onsager bound. First, de-
erywhere finite, i.e., has been suitably “smeared” orfining z=|z,/z_|, note that the total numbers of particles of
distributed. each species are

Following Onsagel{18], consider thetotal electrostatic
N =N/(1+2) and N_=zN/(1+2z).

energy,U', which, besides the interaction energy, also in-

cludes the self energies;*", i.e., the energies required to Recalling the definition of reduced ener¢y.6) and using
assemble the individual ions from an infinitely dispersedihe constraint of overall charge neutrality, one finds the
charge state of zero energy. As is well knowsee, e.g., pound

[21]), the total energy may be expressed in terms of the

electric fieldE as a positive definite quantity, namely, z(a/aT®) + (a/a™)
u(p,T)=Upns= — 1+7

1
tot__ self __— 3 2
U _izq QDUJFE Ui _swfd rIE[*>0.  (A3) For the size-symmetric case, wheaf®=a""=a, the
charge asymmetry does not affect the bound in these reduced
Note that the smeared charge distributions are assumed tmits, so thatu(p,T)=ug.s= —1. If we separate the three

guarantee the finiteness of°, basic size asymmetry cases, the result translates into

(A7)

Upne= —[2/(1+6,)(1+2)+1/(1+6_)(1+2)], for a,,, a__<a,

U= —[2/(1+8,)(1+2)+1/(1+2)], for a,,<a<a_._,
Ugne=—1, for a<a,,, a__. (A8)
|
Note that the strongest bound isl, which obtains for 2. Improved bound
Case lll, when both the like diameters exceethis matches To do better we compare the two-species primitive model

the RPM result. On the other hantyis weaker in Cases | with another model whose energy can be bounded by an
or Il, since the bound can then diverge to when 6,— Onsager construction, specifically, an interpenetrating, two-
—1 (or, equivalently, as,,—0). Physically, shrinking the specieshellmodel, consisting of a charge-neutral mixture of
like diameters(but keepinga, _ positive should not de- uniformly surface-charged spheres of total charggs
crease the energy: thus a stronger bound is desirable. =27.Qg Orz_qg and equal diameteis but withno hard-core
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constraint. The shell diameterwill be identified witha, _
for the primitive models. The interaction potential is de-
scribed further below.

Since the configuration space of the primitive model—in
terms of ion-center locations—is a subset of the space of the
shell model, any ground-state configuration of the primitive
model of energy, sayJg", is present in the shell model with
energy, say,UT", which cannot be lower than the shell

model ground state, sayliag. Thus, if we can establish

Ui(?t;Uilnt (A9) FIG. 5. Two overlapping shell ions, with corresponding hard-
core primitive ions(dotted, which are smaller but concentric. The
and also show th.atﬂg"g is bounded below, we will obtain a shell diameter is identified witha, _ of the primitive models.
lower bound onU™, as desired.
We may construct the interaction potential of the inter- Consider then, for concreteness, two positive overlapping
penetrating shell model, s&y; (which does not behave as shells, separated by a distance, , with a,  <r,, <a;
1/rj; at all separations as the difference between the total see Fig. 5. We want to show that the interaction energy of
energy of a two-particle system and the sum of the two selthis pair, o(r , ), is less than that for the corresponding
energies. Thus ip(r;ry) represents the charge distribution nonoverlapping primitive ions which is simpt;/i/Dr++ .

of a shell ionk centered at,, and By symmetry the two terms in EGA13) are now identi-
. . . cal. Thus, consider the charge distribution of the right-hand
p(r)=pi(r;ri)+p;(r;ry) (A10)  shell in Fig. 5 in the potential of that on the left; the right-

hand distribution divides naturally into the two parts shown

in the figure: a part exterior to the left-hand shglbld) and

an interior part(dashed If r; denotes the position of the

Qi2 q? 1 !eft—.hand ion, the resulting potential at an exterior poirit, '
i+ Da D_Ja = @J d3r|E|?= %f d3rp(r)e(r), is simplyq../[r;—r~| (because these points “see” a spheri-
cally symmetric left-hand charge distributiorConversely,

(A11) interior points, such as<, experience only theconstant

whereE(r;r;,r;) and¢(r;r; r;) are the total field and elec- electrqstatic potentiaf /(a_/2). This is clearlyless tharthe

trostatic potential. If we now defing,(r:r,) to be the elec- potential they would experience were all the left-hand charge

is the total charge density for two ions, the interaction poten
tial follows from

trostatic potential resulting from an isolated shell loatr,, distributed on the smaller primitivg ion_ sphere with the same
we have centerr, . Cons_equentl_y, overlappmg like-charged shell ions
have asmallerinteraction potential than the corresponding
QE primitive ions with the same centers. This establishes the
H draosino=gs. (12 bound(ao)

To obtain a lower bound for the shell model itself, recall
Then, using the linearity of the charge density and potentialEdS: (A3) and(A10) and bound the total energy of any shell
the relation(A11) may be simplified to yield configuration as

Zbijz?o(rij):%fdsr[i)i(r;ri)d’j(r;r]‘)"'ﬁj(r;rj)¢i(r;ri)]- Utm:ifd3r|E|2=%fd3r;3(r)¢(r)>0, (A14)
(A13) ° 8w

To compare the energy of an arbitrary primitive-ion con- . )
figuration with that of the corresponding shell-ion configura-Where the total shell charge densiffy) can be expressed in
tion in order to establish E§A9), we observe first that be- the form (A10) but with a sum extending over all the shell
cause of the pairwise additivity of the interaction energylOns. The total electrostatic potentiah(r), can be decom-
(A2), one need analyze only two shell ions of the samg?0sed similarly, yielding
charge thabverlap To see this, note that ali-,—) ion pairs
in a primitive model are separated by distance not less than

a, _=a, which is the same diameter as that of the shell ions. %f d3ri)(r)¢(r)=%f d3r[pg(r)+- -+ pn(r)]
Thus, oppositely charged shell ions that correspond to a
primitive ion configuration never overlap. The only differ- X[ (1) +-+dp(r)].  (AL5)

ences arise when, in the primitive ion system, one or both of

the like diametersa,,,, are smaller tham. This will allow

overlapping shells in the corresponding shell configurationsFinally, by combining the previously defined shell self-
If a,, and a__ exceeda, the energy of corresponding energies(A12) and interaction potentials in EgA13), the
primitive and shell configurations will always be identical. inequality (A14) may be rearranged to give
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igt—iz ~..>i(;1’ts>_£ N+qi+N_q2_
N N& %~ N~ N| Da ' Da
l9.9-|
=— Ba . (A16)
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per particle(1.6), the result may be written as
u(p,T=-1. (A17)

Note that the positive definite collision diameter, _=a,
and the valencies, do not appear explicitly here since they

The bound on the primitive model is now completed byenter into the definitior{1.6). Sincea,, anda__ are also
combining this with Eq(A9). In terms of the reduced energy absent, the bound remains valid for point ioms.{—0).
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