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Asymmetric primitive-model electrolytes: Debye-Hückel theory, criticality, and energy bounds

Daniel M. Zuckerman,* Michael E. Fisher, and Stefan Bekiranov†
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Debye-Hückel ~DH! theory is extended to treat two-component size- and charge-asymmetric primitive
models, focusing primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion diametersa22

larger than the positive ion diametersa11 . The treatment highlights the crucial importance of the charge-
unbalanced ‘‘border zones’’ around each ion into which other ions of only one species may penetrate. Exten-
sions of the DH approach that describe the border zones in a physically reasonable way are exact at highT and
low densityr and, furthermore, are also in substantial agreement with recent simulation predictions fortrends
in the critical parameters,Tc andrc , with increasing size asymmetry. Conversely, the simplest linear asym-
metric DH description, which fails to account for physically expected behavior in the border zones at lowT,
can violate a new lower bound on the energy~which applies generally to models asymmetric in both charge
and size!. Other theories, including those based on the mean spherical approximation, predict trends in the
critical parameters quite opposite to those established by the simulations.

DOI: 10.1103/PhysRevE.64.011206 PACS number~s!: 02.70.Rr, 05.70.Jk, 64.70.Fx
lly

o

l
n
ro
s
ym

d

ha

th
m

ea

e

l

nd

n of
l,

ric

en-
et-
ic
t
o as-
hat,
d

we
ies

l

ctric
of

the
Un
e,

Th
I. INTRODUCTION

While the values of the critical parameters for the fu
symmetric hard-sphere model of an electrolyte~the ‘‘re-
stricted primitive model’’ or RPM@1–3#! have received ex-
tensive theoretical attention for a number of years~see, e.g.,
@3–10#!, only recently has interest focused on the effects
asymmetryon phase coexistence and criticality@11–17#. Sa-
bir, Bhuiyan, and Outhwaite@11# used the mean spherica
approximation~MSA! and two different Poisson-Boltzman
approaches to compute critical parameters resulting f
both size and charge asymmetry; the reduced critical den
rc* was always reported to increase with greater size as
metry, but the trends for the reduced critical temperatureTc*
were inconsistent.~For appropriate definitions of reduce
temperature and density, see@14# and below.! Gonzalez-
Tovar used the MSA and found, via the energy route, t
both Tc* andrc* increasedwith greater size asymmetry@12#.
Most recently, Raineri, Routh, and Stell also employed
MSA, but augmented the analysis by incorporating Bjerru
Ebeling-Grigo pairing; they likewise predicted that bothTc*
and rc* increase monotonically with size asymmetry@13#.
Recent simulations by Romero-Enriqueet al. @14# ~see also
@15#!, however, reveal theoppositetrends, namely, that criti-
cal temperature and densitydecreasestrongly with increas-
ing size asymmetry. Hence, as remarked in@14#, our current
state of even qualitative theoretical understanding app
less than adequate.

The present report therefore formulates and analyzes
tensions of the Debye-Hu¨ckel ~DH! approach@1# to asym-
metric primitive models@17#. We may recall that the origina
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DH theory, when supplemented by Bjerrum ion pairing@2#
and dipolar-pair solvation in the ionic fluid@9#, remains the
most quantitatively successful theory of coexistence a
criticality in the size-symmetricRPM @see, e.g.,@7~b!,10##.
One might, thus, reasonably hope that a suitable extensio
the DH and~DHBjDI @9#! theories to unequal ion sizes wil
at least, yield correcttrendsin the dependence ofTc* andrc*
on asymmetry.

In fact, in their original 1923 paper, Debye and Hu¨ckel @1#
already claimed to have explicit results for asymmet
primitive models~see@17#!. However, serious flaws in this
historic formulation suggest other, more systematic ext
sions of symmetric DH theory appropriate for the asymm
ric case @17#. We analyze these improved ‘‘asymmetr
Debye-Hückel’’ ~ADH! theories by compairing with exac
series expansions and newly developed bounds, and als
sess their general physical character. We find, in fact, t
contrary to Refs.@11–13#, the critical parameters predicte
by our modified ADH theories@17# exhibit trends in agree-
ment with those obtained in the recent simulations@14,15#.

In order to focus on the effects of size asymmetry,
confine the present discussion primarily to the two-spec
size-asymmetric primitive model~or SAPM!, which consists
of equal numbers,N15N2 , of positive and negative ions
with hard-core diametersa22>a11 , and charges of equa
magnitudesq152q256z6q0 . ~Of course, the comple-
mentary casea11.a22 follows trivially by symmetry.! All
material and space is assumed to possess a uniform diele
constantD. For the most part, we also assume additivity
diameters,

a12[a5 1
2 ~a111a22!. ~1.1!

The degree of asymmetry will be described either by
fractional deviations froma, namely,

ds5~ass2a!/a ~s51,2 !, ~1.2!

or by the diameter ratio@14#
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ZUCKERMAN, FISHER, AND BEKIRANOV PHYSICAL REVIEW E64 011206
l5a22 /a115~11d2!/~12d2!, ~1.3!

where we have used the fact thatd152d2 for the additive
case. Note that the general asymmetric primitive model e
trolyte possesses a large—in fact, three-dimensiona
parameter space: two degrees of freedom for size asymm
~since additivity neednot be assumed! and one for charge
asymmetry~noting that the overall magnitude is irrelevant!.

We take the total number density to ber5N/V with
N5N11N2) and V the volume. The reduced density
then appropriately defined by@14#

r* 5~r11r2!a3, ~1.4!

which seems the most relevant parameter since the cri
densities are typically low,rc* &0.1. But we note that othe
workers have used alternative definitions@11,13#. The natu-
ral temperature scale for studying critically~i.e., low tem-
peratures! in the SAPM is set by the energy of anattractive
pair of ions at contact, so we take

T* 5kBT/~ uq1q2u/Da12!. ~1.5!

It is also convenient to define the reduced electrostatic
ergy, normalized by the energy of closest approach o
~1, 2! pair, namely,

u~r,T![UN
ex~r,T!/N~ uq1q2u/Da!, ~1.6!

whereUN
ex ([UN2 3

2 NkBT) is the overall excess energy.
The theoretical description of size-asymmetric models

naturally, more complicated than in the symmetric case. S
cifically, in considering the correlations and fluctuations
the neighborhood of a particular ion~which, following DH,
we may suppose is fixed at the origin!, three distinct sur-
rounding spherical shells or zones must be accounted for
see this, suppose first that the selected, fixed ion is pos
and that the diameters are ordered in size according toa11

,a12,a22 : we term this the ‘‘inner’’ case since the like
like diameter of the central charge is smaller thana12 .
Trivially, no ion center can enter the ‘‘interior’’ zone 0,r
,a11 , where r is the radial distance from the origin; o
course, this applies to the symmetric RPM as well. New
the SAPM, however, is the ‘‘border’’ zone~or, more pre-
cisely, the ‘‘sub-border’’ zone! a11,r ,a12 for this ‘‘in-
ner’’ scenario, that is shown shaded in Fig. 1: this can
populated only by the centers of the smaller, i.e., positi
ions; the larger negative ions are excluded. Finally, as in
symmetric model, positive and negative ions may be pres
in the exterior zoner .a12 . When a larger negative ion i
chosen to be at the origin, there is a complementary ‘‘sup
border’’ zone, a12,r ,a22 , into which only positive
charges can penetrate.

The presence of these ‘‘charge-unbalanced’’ zones in
asymmetric case turns out to play a crucial role which,
particular, means that the simple extension of the DH tre
ment~ADH theory!, although in agreement in leading orde
at high T with the exact series expansions@3,16,17#, fails
badly at lower temperatures. This is shown below in Sec
after we develop the ADH formulation, which allows for th
01120
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border zones. While the failure is not entirely surprisin
since the general DH formulation relies on a hig
temperature expansion, it does present a sharp contrast t
symmetric case. One striking consequence of the difficul
is the theory’s violation, at low temperatures, of an extens
of Onsager’s lower bound for the~internal! energy of the
RPM @18# that we establish in the Appendix forgeneral
primitive models that are asymmetric in both charge a
size.

It is an interesting fact that analysis of the general prim
tive model with nonadditivediameters presents few add
tional problems in most cases.~See, e.g.,@16# and references
therein.! On the other hand, the nonadditive models are
tentially useful in applications because they can repres
short-range interactions beyond the pure Coulombic co
plings. Thus if, for example,a115a225a0 , so that one
has a size-symmetricmodel, buta12.a0 , a moment’s con-
sideration shows that unlike ions experience a strong sh
rangerepulsion relative to the geometric ion sizea0 . This
competes with the ionic attraction and, thus, for examp
increases the relative size of a Bjerrum pair and decrease
stability. Conversely, the casea12,a0 can be viewed as
representing an enhanced short-range repulsion betweenlike
ions of a ‘‘true’’ diameter less thana0 . In reality, of course,
the interactions in ionic systems deviate from pure elec
statics at short distances. Accordingly, although we mai
focus below on the additive case, we briefly indicate wh
necessary how to construct DH theories for the general, n
additive model@17#. We believe this theory is of interest i
its own right as well as providing a basis for more elabor
treatments. Further details of the linear asymmetric D
theory are also given in@17#.

Because of the failures of the linear asymmetric D
theory, we have explored some modifications that, for m
est degrees of asymmetry, ensure satisfaction of the en
bound of the Appendix and of thermal convexity requir
ments@10#; these criteria are also satisfied for large asymm
try in the critical and coexistence regions. The modifi
ADH theories accomplish this by specifically allowing fo

FIG. 1. Illustration of a border zone. The gray subborder zo
may be occupied only by thecentersof 1 ions sincea11,a12 .
6-2
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ASYMMETRIC PRIMITIVE-MODEL ELECTROLYTES: . . . PHYSICAL REVIEW E64 011206
and compensating in a natural way, the charge imbalan
induced by the existence of the border zones@17#. These
theories are expounded in Sec. III and their predictions
criticality are examined in Sec. IV. It transpires, as me
tioned above, that the simplest modified theories appear t
the first theoretical treatments to predict correctly~as judged
by the simulations@14,15#! that bothTc* and rc* fall when
size asymmetry is introduced; however, forl5a22 /a11

*4, the critical density displays incorrect, nonmonotonic b
havior. Finally, Sec. V presents a brief overview and so
conclusions.

II. ASYMMETRIC DEBYE-HU ¨ CKEL THEORY

A. Formulation of the theory

In this subsection we present the ADH theory. Since
cost in additional complexity is slight, we consider here~and
in the Appendix! a general two-species model with poi
chargesqs5zsq0 (s51,2) centered in hard spheres o
diametersass with the collision diametersast restricted
only by a11<a[a12<a22 . The Debye-Hu¨ckel proce-
dure @1#, interpreted generally, directs one to calculate
excess thermodynamic functions, based on approximat
for the correlation functions that are then integrated via
‘‘energy route’’ @19#. Specifically, definingcs to be the av-
erage electrostatic potential at a~fixed! ion of speciess due
to all other ions, the reduced electrostatic energy, define
Eq. ~1.6!, is given by

u5
Da

2~z12z2!q0
~c1

,2c2
.!, ~2.1!

where the superscripts, and. merely serve as reminders o
the relative ion sizes, and also facilitate formulation of t
nonadditive case. Other thermodynamic quantities, such
the free energy and pressure, follow in principle after su
able integrations and differentiations. We derive an expl
closed-form expression for the internal energy as a func
of T andr, and the second virial term for the pressure is a
discussed.

We begin the calculation of the ion potentialscs(T,r) by
fixing an ion of speciess at the origin, as in Fig. 1. The
induced electrostatic potential,f(r ), and corresponding
charge density,rq(r ), are then related by the~exact! aver-
agedPoisson equation, namely,

¹2^f~r !&s52
4p

D
^rq~r !&s , ~2.2!

where the subscripts indicates that the averages are p
formed with a charge of speciess at the origin@19#. The ion
potentials follow from the limit

cs~T,r!5 lim
r→0

F ^f~r !&s2
qs

Dr G , ~2.3!

which eliminates the self-interaction of the fixed charge
the origin.
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The DH procedure then introduces two approximatio
for the average charge density,^rq(r )&s . The well-known
Poisson-Boltzmann approximation is followed by a linea
ization of the exponential in the Boltzmann factors, yieldi

^rq~r !&s . (
t51,2

qtrt exp@2bqt^f~r !&s#, ~2.4!

. (
t51,2

qtr r@12bqt^f~r !&s#, ~2.5!

where b51/kBT. In the size-asymmetric models, the a
proximate charge density must be allowed to take a differ
form in each of the three distinct zones around the cen
charge. Thus, when the fixed charge is positive (s51) one
has

^rq~r !&15q1d~r ! for r ,a11 , ~2.6!

.q1r1@12bq1^f~r !&1#

for a11,r ,a, ~2.7!

.2~kD
2 /4p!^f~r !&1 for r .a, ~2.8!

where, as usual@19#, overall electroneutrality has been im
posed. Here, the inverse Debye length is defined in the s
dard way via

~kDa!25xD
2 5~4pa2q0

2/DkBT!(
s

rszs
2. ~2.9!

Note: ~i! there is no approximation in the innermost excl
sion zone (r ,a11); ~ii ! the subborder zone (a11,r ,a
5a12) can contain none of the larger negative ions so t
in Eq. ~2.7!, which represents the fundamental extension
the original DH theory, onlyq1 appears on the right-han
side; and~iii ! the exterior zone (r .a) follows the standard
Debye-Hückel form as in the symmetric RPM@1,19#.

The approximations~2.6!–~2.8! complete the reduction o
the averaged Poisson equation~2.2! to the basic ADH equa-
tion for a 1 ion. This may be solved for four unknow
coefficients using standard electrostatic boundary conditi
~continuity off and]f/]r ! at r 5a11 andr 5a125a with
f(r )→0 as r→` @19#, from which c1 follows via Eq.
~2.3!. The closed forms for the electrostatic energy in t
ADH approximation then result from combining the gene
expression for the energy~2.1! with the appropriate expres
sions for thecs potentials, which are presented below. If w
introduce

us[@ uzsu/~z12z2!#1/2, ~2.10!

one finds that the potential in the ‘‘inner’’ scenario, with
smaller central positive ion~indicated by the superscript,!,
may be written as
6-3
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ZUCKERMAN, FISHER, AND BEKIRANOV PHYSICAL REVIEW E64 011206
c1
,~q0 ;T,r;$zs%,$ds%!

5S z1q0

Da D uz2 /z1uT* ~A1
,1A2

,1A3
,!2B,

C, , ~2.11!

where the various contributions are

A1
,5~11xD1xDd1!@cosh~u1xDd1!21#, ~2.12!

A2
,52~u1

211u1xD1u1xDd1!sinh~u1xDd1!,
~2.13!

A3
,5xDd1 , ~2.14!

B,5xD cosh~u1xDd1!2u1xD sinh~u1xDd1!,
~2.15!

C,5~11xD1xDd1!cosh~u1xDd1!

2u1~u1
221xD1xDd1!sinh~u1xDd1!. ~2.16!

Note thatd1<0 for this , case. TheAn
, terms ofc, have

been grouped so that each vanishes individually whend1

→0; in this limit of size symmetry, furthermore, the pote
tial reduces to the standard DH result@1,3,19# for a size-
symmetric primitive model, namely,

c1
,5c152~z1q0 /Da!xD /~11xD!.

When the diameter of the negative ion is less thana, one
should simply switch the species subscripts in Eq.~2.11!.

For the ‘‘outer’’ situation, with a larger central ion~indi-
cated by superscript.!, the corresponding result is

c2
.~q0 ;T,r;$zs%,$ds%!

5S uz2uq0

Da D T* ~A1
.1A2

.1A3
.!1B.

C. , ~2.17!

where the contributions are now

A1
.5~11xD!@cosh~u1xDd2!21#, ~2.18!

A2
.5~u1

211u1xD!sinh~u1xDd2!, ~2.19!

A3
.52xDd2 , ~2.20!

B.5xD cosh~u1xDd2!1u1xD sinh~u1xDd2!,
~2.21!

C.5~11xD!cosh~u1xDd2!

1~u1
211u1xD!sinh~u1xDd2!. ~2.22!

Naturally,c2
. also reduces to the symmetric DH result wh

d2→0. ~If a11.a22 , one should simply switch the1 and
2 subscripts.!

For future reference, notice that bothc1
, and c2

. have
readily calculated zero-temperature limits, namely,
01120
cs
,~T50!52S zsq0

Da D 1

11ds
and cs

.~T50!52
zsq0

Da
,

~2.23!

which are independent of density. Furthermore, small dia
etersa are of interest; butcs

, divergesfor ‘‘point’’ ions, i.e.,
in the limit ass→0 ~or ds→21!. This, in fact, serves as a
warning sign, as will be seen below.

B. Assessment of ADH theory

We now examine the predictions of the linear AD
theory. Following Debye and Hu¨ckel @1,19#, the free energy
is to be obtained from the internal energy in Eq.~2.1! by
employing the Debye charging process~which is equivalent
to using the standard thermodynamic relation for the f
energy in terms of the energy!. This yields the reduced ex
cess free energy density as

f̄ ex~T,r;$zs%,$ds%![2AN
ex~V;T!/VkBT,

5
2DkD

2

4pq0~z12z2!
E

0

1

dz@c1
,~zq0!2c2

.~zq0!#, ~2.24!

whereAN
ex is the total excess Helmholtz free energy. It mu

be recalled that in addition to the explicit dependence onq0
~and, hence, onz ! entering Eq.~2.1! via Eqs. ~2.11! and
~2.17!, an implicit dependence occurs viakD}q0 that enters
Eqs.~2.12!–~2.16! and ~2.18!–~2.22!.

Except in the standard symmetric case~l50, d15d2

50! most of the integrals involved in Eq.~2.24! seem intrac-
table. Nevertheless, one may derive an expansion for the
energy, and thence for all other thermodynamic quantit
such as the pressure, by expanding the expressions~2.11!–
~2.22! and integrating term by term. By this route, we c
check the theory against exactly known expansions~see, e.g.,
@3,16,17#!.

Thus, consider the low-density/high-temperature exp
sion for the general primitive model~with arbitrary charges
qs5zsq0 and diametersast! which is known to overall or-
derr5/2 in the density. On specializing to the two-compone
case, this may be written as

f̄ ~T,r!5kD
3 /12p1B2,3

† r2 ln~kDa!/T* 31r2(
n50

`

B2,n /T* n

1O@r5/2 ln~kDa!#, ~2.25!

where we again recallkDa[xD}Ar* . The leading term
here varies asr3/2 and represents the DH limiting law repro
duced by all sensible approximations. The coefficientB2,0
derives from the second virial coefficient for a pure ha
sphere gas. At the present level of approximation, this m
be accounted for precisely by including the hard-core~HC!

free energy density,f̄ HC, in the basic approximation@9#. The
remaining coefficients B2,1, B2,2, B2,3

† , B2,3, B2,4, . . .
arise from the electrostatic interactions.

Now, DH-based approximations~in common with the
MSA, etc.! cannot generate ther2(ln r)/T 3 term with coef-
6-4
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ficient B2,3
† . However, our linear ADH theory yields the ex

act leading coefficients in order 1/T and 1/T2. Explicitly we
find

B2,15pa3uz1z2uFd1~21d1!1d2~21d2!

~z12z2!2 G , ~2.26!

which vanishes for the size-symmetric models~with ds50!,
and

B2,252pa3F11
z1

2 d11z2
2 d2

~z12z2!2 G . ~2.27!

FIG. 2. Effects of size asymmetry on high- and low-temperat
energy isochores, according to the linear ADH theory for a
primitive model. For each density, the RPM isochores~with l
[a22 /a1151! are shown as solid curves. The associated, suc
sively lower plots correspond tol52 ~dashed!, 4 ~dot-dashed!, and
6 ~dotted, forr* 50.1 only!. The density-dependent,T* →` limit-
ing values areexact. ~The near-agreement between two of t
curves atT* 5` is a coincidence.!
01120
It is, indeed, striking that the exact leading-order dep
dences in powers of 1/T are reproduced for arbitrary diam
eters, a11 , a12 , and a22 ~including nonadditivity and
point charges!. However, one probably should not be so su
prised since the arguments leading to the basic ADH eq
tions, Eq.~2.2! with Eqs. ~2.4! and ~2.5! are, on reflection,
clearly valid to leading orders inr and 1/T even if it is not
obvious how far the validity will go.

To study the ADH theory more quantitatively, we focu
on the energy for the additive 1:1 case (z152z251). No
integrations are then required. Figure 2 displays energy
chores as functions ofT* at high and low temperatures fo
degrees of asymmetryl5a22 /a1151 ~the RPM for ref-
erence, solid curves!, 2, 4, and 6. These values ofl corre-
spond to size deviationsud1u5d250, 1

3,
3
5, and 5

7, respec-
tively. It is evident that ADH theory predicts that size
asymmetry lowers the electrostatic energy, with the effe
being greatest at the highest and lowest temperatures
intermediateT the predictions for varyingl are grouped to-
gether according to density.

Notable features of the high-T plots of Fig. 2~a! are, first,
that the finite values ofu attained whenT→` are exact. This
can be verified by a simplea priori calculation; alternatively,
the values may be checked from the exact-orderr2/T term as
displayed in Eqs.~2.25! and ~2.26! that is correctly repro-
duced by ADH theory. The limiting slopes atT* 5` are
discussed further in Ref.@17#.

The behavior ofu(T,r) at low temperatures proves, how
ever, much less satisfactory. From Fig. 2~b! one sees that the
energy is predicted to fall increasingly rapidly for increasi
asymmetry whenT falls, passing well below the ground-sta
predictionu52 1

2 of the symmetric DH theory; but see als
@10# for the DHBjDI extensions@9#. Most seriously, how-
ever, for large enough asymmetry, the energy drops be
the 1:1 size-asymmetric lower bound, namely,u>21, estab-
lished in the Appendix~which also treats generalz1 andz2!.
More concretely, the ground states predicted by ADH the
follow from Eqs.~2.1! and ~2.23! which yield

uADH~T50;l!52 1
8 ~31l!. ~2.28!

This expression evidently violates the bound whenl.5 ~or
ud1u5d2. 2

3 !.
Of course, this is unacceptable, but even for smaller v

ues ofl this behavior casts doubt on the value of the a
proximation at lowT in the vicinity of the expected critica
region. The origin of this behavior can be understood phy
cally by examining the ADH predictions for the mean tot
charge, sayQ1

, , within the subborder zonea11,r ,a12

5a that can only be penetrated by like, i.e., positive charg
Recalling the notations in Eq.~2.2! and the approximations
~2.4!–~2.8!, the theory yields

Q1
,5E

a11

a12

d3r ^rq~r !&1

.E
a11

a12

d3r q1r1@12bq1^f~r !&1#, ~2.29!

e
1

s-
6-5
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ZUCKERMAN, FISHER, AND BEKIRANOV PHYSICAL REVIEW E64 011206
where the precise form of^f(r )&1 follows from the explicit
solution of Eq.~2.2! with Eqs.~2.6!–~2.8! @17#. Now, when
T→` the approximation becomes exact, yieldingQ1

,

5q1r1V,, whereV,5 4
3 p(a12

3 2a11
3 ) is the volume of

the subborder zone~see Fig. 1!. At finite but large tempera-
tures, Eq.~2.29! correctly predicts the linear decrease ofQ1

,

with b as the~1,1! repulsions come into play. Of cours
the repulsions become increasingly effective asT decreases
so that, at lowT, one expectsQ1

, to remain positive but to be
of magnitude onlyV,q1r1 exp(2bq1

2 /Da12) ~although,
because, of the negative screening cloud that builds up
r .a12 , this estimate might need to be modified som
what!.

However, if one neglects the screening, the mean po
tial ^f(r )&1 in Eq. ~2.29! will be of order1q1 /Da12 , or
larger, in the subborder zone. Then, asT falls andb→` it is
evident that Eq.~2.29! is likely to predict, first, a totally
unphysicalnegativevalue forQ1

, ~even thoughno negative
charges can enter the subborder zone! and, eventually, a di-
vergence ofQ1

, to 2`. Explicit calculations@17# fully bear
this out. For example, whenl52, andr* 50.01, one finds
negativeQ1

, for T* &0.9; for r* 50.1 (*rc* ) the change of
sign is delayed untilT* .0.6 but the divergence to2` is
more rapid. Since the ADH theory for the border zon
embodied in Eqs.~2.5!, ~2.7!, and ~2.29! reflects ahigh-T
expansion, the problems at lowT should not be a great sur
prise. On the other hand, the successes of the original
theory for the symmetric case at lowT ~e.g.,@9,10#! clearly
hinge on the absence of any ‘‘charge-unbalanced’’ bor
zones.
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Clearly, the serious physical defects of the ADH tre
ment must be rectified if the theory is to have any value
T* &1: and, we expect,Tc* &0.1 @7–13#. Before addressing
that task, however, we present, briefly, the original claims
Debye and Hu¨ckel @1# as regards a system of ions with arb
trary diameters.

C. Original DH theory

In their original 1923 paper, Debye and Hu¨ckel @1# did, in
fact, discuss the case of an ‘‘arbitrary ionic solution’’—th
is, within the model they adopted, a mixture of hard-sphe
of varying diametersass and chargesqs , or the general
primitive model. However, in their analysis no mention
made of the border zones in which charges of only spe
with small enough diameters can be present.~Note that in the
multispecies case there will, in general, be a number ofdis-
tinct border zones around each charge.! Rather, their argu-
ment is presentedas if all species were of thesamediameter
@1,17#. The mathematics is then identical to that for t
RPM. In our notation, Debye and Hu¨ckel thus present the
conclusion

cs52S zsq0

D D kD

11kDass
, ~2.30!

~i.e., precisely the RPM result whenass[a!. The equivalent
free energy for a 1:1 model is then
a3 f̄ DH5
2 ln@11~11d1!xD#1@~11d1!xD#222~11d1!xD

16p~11d1!3 1
2 ln@11~11d2!xD#1@~11d2!xD#222~11d2!xD

16p~11d2!3 ,

~2.31!
e
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from which predictions for criticality, etc., follow: se
below.

Neglecting all the border zones spares this ‘‘original DH
theory the pathology of our ADH theory, but seriously r
duces the plausibility of their treatment for size-asymme
models. Thus, not so surprisingly, the high-T/low-r expan-
sions of the thermodynamics resulting from Eq.~2.31! differ
at the first correction to the limiting behavior—seeB2,1 in
Eq. ~2.26!—from the exact results captured by our AD
theory; indeed, the former depends only on the ratioxD

2

}r/T, while the exact results are more complex.

III. MODIFIED ASYMMETRIC DH THEORY

We now discuss a class of modifications of ADH theo
~originally introduced in@17#! which avoid the unphysica
behavior of the charge density in the border zones: this
havior was identified in Sec. II B above as a root cause of
c

e-
e

pathological low-T behavior that included violations of th
lower bound on the internal energy~see Appendix!. In the
following section, we examine the predictions of these mo
fied ADH theories for the critical parameters~including a
comparison with the original, 1923 DH proposal for asym
metric systems!.

A. Introduction of border zone factors

It is clear from the previous considerations of the AD
prediction~2.29! for the chargeQ1

, in a subborder zone, tha
the standard DH linearization of the Poisson-Boltzmann
ponential is generally inadequate in any zone where
mean charge is necessarily unbalanced because of stro
repulsive short-range, steric repulsions. As an alternative
step, that will still yield an analytically tractable theory, w
forego the self-consistent aspect of the Poisson-Boltzm
approximation~2.4! in the border zones and consider repla
6-6
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ing the self-consistently determined electrostatic poten
^f(r )&s by a fixed but possibly temperature- and densit
dependent effective potentialfs

†(r ;T,r).
One possibility is merely to use thebarepotential, i.e., to

put fs
†5qs /Dr . The right-hand side of Eq.~2.7! would then

readq1r1 exp(2bq1
2 /Dr); but an obvious drawback of suc

an approximation is that the resulting closure of Poisso
equation~2.2! is no longer readily solvable. Instead, we sim
plify further by neglecting ther-dependence offs

† . Thus we
introduce temperature-dependentborder zone factorsF ,(T)
andF.(T) and consider the replacement of Eq.~2.7! for a
subborder zone by

^rq~r !&1[rq
,~r ;T,r!.q1r1F ,~T!, a11,r ,a. ~3.1!

Likewise, for a superborder zone~indicated, as before, by th
superscript.! we advance

^rq~r !&2[rq
.~r ;T,r!.q1r1F.~T!, a,r ,a22 . ~3.2!

The calculation of thecs potentials now proceeds just a
in Sec. II but the results take a simpler form, which w
distinguish by using a circumflex. Maintaining our conve
tion of a smaller positive ion (d1,0) and larger negative
ion (d2.0), we find

ĉ1
,52

z1q0

Da

xD

11xD
H 11xD

uz2uT* d1F ,~T!

2~z12z2!

3@21d12xD~d11 2
3 d1

2 !#J , ~3.3!

ĉ2
.52

z2q0

Da

x0

11xD
H 11xD

z1T* d2F.~T!

2~z12z2!

3@21d21xD~d21 1
3 d2

2 !#J . ~3.4!

These modified potentials, valid for generalF(T), reproduce
the symmetric DH theory whends→0, and always generat
the standard limiting laws whenr→0. For large xD
}(r/T)1/2, these approximations for thecs behave as
xD

2 TF, whereas the standard DH expressions approach
stants. While the consequences of this fact are not obvi
some numerical results are discussed in Sec. III C, below

On the other hand, both of the high-T second-virial terms
B2,1 andB2,2 that are correctly generated by the ADH theo
@see Eqs.~2.26! and ~2.27!#, will be reproduced now if the
zone factors satisfy

F ,~T!512
uz1 /z2u

T* ~11 1
2 d1!

1OS 1

T* 2D , ~3.5!

F.~T!511
1

T* ~11 1
2 d2!

1OS 1

T* 2D . ~3.6!

In principle,F , andF. could be chosen to generate furth
exact second-virial terms; but such an approach does
seem of much practical value.
01120
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B. Choice of zone factors

Undoubtedly the simplest reasonable approximation
the zone factors is provided by taking

MF: F ,~T!5F.~T!51 ~3.7!

or, equivalently, by dropping the term linear inb in Eqs.
~2.5! and ~2.7!. The results will fail to reproduce the correc
B2,2 coefficient in Eq.~2.27!, although the exactB2,1 term
will be generated. Physically, this approximation amounts
a direct mean-field or van der Waals type approach in wh
the effects on the internal energy of the (T5`) unbalanced
zone charges,Q1

,5q1r1V, andQ2
.5q2r2V. ~whereV,

andV. are the zone volumes!, are accounted for in a direc
way that neglects fluctuations. The zone charges remain
nite and, in fact,fixed for all T: but, at least for small
relative zone volumesV,/a3.4pd1(11d1) and V./a3

.4pd2(11d2), one might reasonably expect that the in
tial thermodynamic trends with increasing asymmetryl
5a22 /a11 , for smalll, will be correctly predicted.

A second natural step, following our initial discussion,
to takef†(r ) to be the direct potential,qs /Dr , evaluated at
the mean radiusof the border zones, namely,r ,5 1

2 (a11

1a)5(11 1
2 d1)a and r .5(11 1

2 d2)a. This amounts to
adopting the exponential form

EXP,: F ,~T!5exp@2bq1
2 /Da~11 1

2 d1!#, ~3.8!

for the inner zone and similarly forF.(T) but with the ex-
ponent

y.51bq1q2 /Da~11 1
2 d2!. ~3.9!

It is encouraging that these choices precisely satisfy E
~3.5! and ~3.6! and so reproduceboth B2,1 andB2,2.

As regards the subborder zone where, as discussed in
II B, one expectsQ1

,(T,r) to vanish at lowT ~or, at least,
approach very small values!, the assignment~3.8! seems
rather satisfactory. Indeed, combining Eq.~3.1! and the first
part of Eq. ~2.29! shows thatQ, will remain positive but
decrease exponentially rapidly as the~1,1! repulsions
‘‘flush out’’ charge from the subborder zone.

It is worth pointing out that the exponential treatment
the subborder zone can be extended within the DH s
consistent spirit by linearizing the Poisson-Boltzmann fac
in Eq. ~2.5! about the central value of the direct potential
the subborder zone. Thus, if2y, denotes the exponent i
Eq. ~3.8!, while y5bq1^f(r )&1 , one may replace Eq.~2.7!
by

^rq~r !&1.q1r1e2y5q1r1e2y,
e2~y2y,!

.q1r1e2y,
@12~y2y,!#. ~3.10!

The overall factore2y,
should now ensure the sensible b

havior of the subborder zone chargeQ1
, while the linear

factor y}^rq(r )&1 accounts self-consistently for some flu
6-7
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tuation effects while still allowing integration of the close
ADH equations. We have not, however, examined this
proach further.

In the superborder zone case, however, matters are
nificantly different. Certainly, as follows from Eq.~3.6!, one
expects the mean border-zone chargeQ2

.(T,r), which will
be positive forT5`, to increase initially whenT falls. This
is simply because the Boltzmann factor enhances the at
tions between the larger, central negative ion and the sm
positive ions. Nevertheless, the growth ofQ2

. cannot con-
tinue indefinitely as would be implied by adopting the EXP.

form with Eq. ~3.9! for F.. Regardless of other effects, th
hard cores of the1 ions must limit the number that can b
packed into a superborder zone at anyT: henceQ2

. must
saturate. This effect may be incorporated into the prese
framework via a saturation fraction,F`

.5s, which pre-
scribes the limitingT→0 superborder zone charge density
sq1r1 ; recall Eq.~3.2!. A plausible zone factor is then th
‘‘regulated’’ exponential form

REGEXP.: F.~T!5
secy.

ecy.
211s

, ~3.11!

with c5s/(s21), which satisfies Eq.~3.6! and approachess
for large y. ~i.e., low T!. In the limit s→1 ~no growth in
Q2

.! this reduces simply to the mean-field form~3.7!.
The difficulty in utilizing this proposal, however, is t

know what saturation value (s.0) is appropriate. At lowT,
considerations of ion association indicate that the predic
saturation charge in the superzone, namely,

Q2s
. 5V.q1r1s54pq0

d2~11d21 1
3 d2

2 !

11uz1 /z2u
z1r* s,

~3.12!

should not exceed the neutralizing valueuq2u5uz2uq0 . To
meet this condition requiress}1/r. While a density-
dependents and, hence,F., can be accommodated withou
changing Eq.~3.4!, the subsequent expressions for the fr
energy become more complex. Furthermore, whenr* in-
creases,s must decrease and may even fallbelow unity. In
these circumstances and in the absence of other effe
selection criteria we believe it is appropriate to accept
mean-field form~3.7!, i.e., to setF.[1 even thoughB2,2
will not then be correctly reproduced.

In passing we mention, nonetheless, that we have
exploredalgebraic forms that respect Eq.~3.6! @20#. As an
example, one can consider

F.~T!5~11y.!/@11~y./s!2#n, ~3.13!

which saturates atF.5s ~not necessarily greater than unit!
whenn5 1

2 but decays to 0 at lowT whenn. 1
2 . For s*2

such approximations have an added, unexpected fea
namely, they tend to predict an additional asymmetric criti
point at higher densities that does not smoothly connec
the standard DH critical point@9# whenl→0. While, owing
to the strong short-range interactions implicit in the asy
metric systems, such extra critical points are not obviou
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unphysical~especially when the diameters are nonadditiv!,
we will not discuss the algebraic forms~3.13! ~or EXP.!
further here.

C. Behavior of energy isochores

Before examining the predictions of the modified AD
theories for criticality, it is instructive to examine energ
isochores, such as those plotted in Fig. 3, for several de
ties near the critical value: compare with the results for
simple ADH theory in Fig. 2~b! but note the difference in
vertical scales. At temperatures in the coexistence reg
(T* &0.2) and for modest degrees of asymmetryl
&3 – 4), both the MF-ADH theory@specified by Eq.~3.7!#
and the EXP,MF.ADH theory @where F , has been re-
placed by Eq.~3.8!# predict that the internal energyincreases
above the RPM value with increasing asymmetry. This
duction in thermodynamic stability suggests, as we will co
firm, that the predicted values ofTc* fall as l increases.

We also find that the MF-ADH and EXP,MF.ADH
theories do, indeed, satisfy the energy bounds of the App
dix for all ~r, T! states relevant to the critical and coexisten
regions in the additive case. Bound violations can occur,
these arise only at the highest densities (r* .1) and when
the asymmetry is great (l@1). While this behavior under-
mines the two modified ADH theories investigated as ove
descriptions of the asymmetric primitive model, the patho
gies occur far from the critical region and at unphysica
large asymmetry levels.

For moderate to large asymmetry and high density, ho
ever, we find that the MF-ADH and EXP,MF.ADH isoch-
ores exhibitnonmonotonicbehavior inT, indicating a ther-
modynamic instability as previously found in a variety
ion-pairing theories @10#. For both the MF-ADH and
EXP,MF.ADH theories, these convexity violations occu

FIG. 3. Effects of size asymmetry on the low-temperature
ergy isochores, according to the simplest ‘‘mean-field’’ modific
tion of ADH theory for a 1:1 primitive model at densitiesr*
50.01, 0.03, and 0.1 and size asymmetriesl51 ~the RPM! solid
curves,l52, dashed, andl54, dot-dashed curves.
6-8
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ASYMMETRIC PRIMITIVE-MODEL ELECTROLYTES: . . . PHYSICAL REVIEW E64 011206
for additive models (d252d1), roughly, only whend2

1r* *1. No convexity violations are found forl&2 at any
physical density~recalling the packing limit!: this confirms
the view that the present theories are of greatest validity
modest asymmetries.

IV. PREDICTIONS FOR CRITICAL PARAMETERS

The discussions presented above of the various prop
modifications of the asymmetric DH theory indicate that t
simpler versions should provide a reasonable basis for
ther exploration, at least in the case of small size asym
tries. Accordingly, we present here, first, by way of calib
tion, the predictions of~i! the original, 1923 DH theory
embodied in Eq.~2.31!; ~ii ! the MF-ADH theory that uses
the simple, mean-field border-zone factors~3.7!; and~iii ! the
EXP,MF.ADH theory that retains the mean-field treatme
for the superborder zones but recognizes, via Eq.~3.8!, the
decrease in subborder zone charge resulting from
Boltzmann-factor-enhanced like-charge repulsions.

The predictions forTc* (l) andrc* (l) for a 1:1 electrolyte
are embodied in Fig. 4. The asymmetry variablev(l)
5(12l)2/(11l2) is convenient@14# since it respects the
symmetryl↔1/l. Note thatv(2)50.20,v(3)50.40, and
v(4.79)50.60, while the point charge limit (l5`) gives
v51.

In Fig. 4 no hard-core terms have been included in
free energy@9#. Thus for the RPM~l51, v50! one has
Tc*

DH5 1
16 50.0625 @7,9#, which may be compared with

simulation estimates yieldingTc* .0.049 ~see@7#!. The DH
prediction for the critical density is very low, namel
rc*

DH51/64p.0.004 97 @9#; however, this increases t
around rc* .0.03 when Bjerrum ion pairing is introduce
@7,9#. Inclusion of hard-core effects, say, via a Carnah
Starling form, reduces all these parameters by a few per
@9#—and the same is expected to happen for the ADH-ba
theories.

We note immediately from Fig. 4 that the original D
theory ~i! predicts that bothTc* (l) and rc* (l) rise rapidly
with l. These are precisely the trends found by the M
~using the energy route! @12# and by the MSA with Bjerrum-
Ebeling-Grigo pairing @13#. The modified Poisson
Boltzmann approximations of@11# likewise predict thatrc*
increases.~See also Fig. 3 in@14#.! In these approximations
however, the initiall51 values are well known to be sig
nificantly higher@Tc* (1).0.08,rc* (1).0.015 to 0.03#; nev-
ertheless, the proportionate rate of increases are rou
comparable.

By contrast, both of the modified ADH theories predic
strongdecreasein Tc* andrc* whenl increases from unity:
see plots~ii ! and ~iii !. Furthermore, these decreases are
accord with the simulations@14,15# ~which, however, start
from Tc* (1).0.049 andrc* (1).0.07! and the relative rates
of fall are quite comparable. For the MF-ADH theory~ii ! the
critical temperature decreases monotonically and we
Tc* (l5`).0.049 in the point charge limit (a11→0),
while rc exhibits a shallow minimum atl.4 and then in-
creases torc* (l5`).0.006. By comparison, extrapolatio
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of the simulations~beyondl.6! suggests, roughly,Tc* (`)
.0.022 andrc* (`).0.015@14#.

In the case of the EXP,MF.ADH theory ~iii !, however,
while Tc* (l) falls monotonically to about 0.053 whenl
→`, the critical density undergoes a shallow minimu
around l.1.8 and then rises. Insofar as the simulatio
seem trustworthy, and exhibit plots that curvedownwards
~i.e., are concave! vs v~l!, it is surprising that the use of th
EXP, choice forF , leads to apparently inferior predictions
Indeed, ona priori theoretical grounds, the latter would see
superior to the MF assignmentF ,51. We emphasize again
therefore, that various steps in our analysis appear m
soundly based whenl is not too large.

FIG. 4. Critical temperature and density predictions for a 1
electrolyte with additive hard-sphere interactions as a function
the size asymmetry variablev(l)5(12l)2/(11l2), which in-
creases monotonically withl5a22 /a11 . The reduced parameter
rc* and Tc* are defined via Eqs.~1.4! and ~1.5!: ~i! represents the
1923 DH theory, while modifications of asymmetric DH theory a
embodied in~ii ! with mean-field factors for bothF , andF., and
~iii ! with a Boltzmann-factor (EXP,) border zone factor forF ,

and a mean-field factorF.. The circles denote theTc* simulation
estimates of Romero-Enriqueet al. @14#.
6-9
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ZUCKERMAN, FISHER, AND BEKIRANOV PHYSICAL REVIEW E64 011206
For completeness, we report that the MF-ADH a
EXP,MF.ADH theories predict that the critical ratioZc
5pc /rckBT falls monotonically withl from 0.090 36 atl
51 @9#, while the original DH theory~Sec. II C! predicts a
fall of just a few percent followed, forl*2, by a monotonic
rise. Inclusion of hard-core terms in the free-energy increa
these values~by about 7%! but otherwise the behavior re
mains similar.

V. SUMMARY AND CONCLUSIONS

We have extended Debye-Hu¨ckel ~DH! theory to asym-
metric two-component hard-sphere electrolytes~i.e., ‘‘primi-
tive models’’! and computed the predicted critical tempe
tures and densities. We also have derived, in the Append
lower bound on the internal energy that extends Onsag
bound@18# and depends only on the valence productuz1z2u
and the unlike ‘‘collision diameter’’a12 . In order to extend
the original DH theory@1# ~based on the Poisson-Boltzman
equation! to the case of size-asymmetric ions with, sa
a22.a11 , we have identified ‘‘border zones’’ around ion
of both species, which prove to be of essential importan
These zones arecharge-unbalancedeven at infinite tempera
ture because the larger~negative! ions are geometrically ex
cluded while the smaller~positive! ions may always enter
see Fig. 1.

DH extensions that describe the border zones in a ph
cal way ~Sec. III! prove successful in matching trends—
determined by two independent simulation studies@14,15#—
in the critical temperature and density with increasing s
asymmetry~see Fig. 4 and Sec. IV!. This contrasts favorably
with other theories, including several based on the m
spherical approximation@11–13#, which predict trends oppo
site to those revealed unequivocally by the simulations.

The existence of the zones complicates the theory in
essential way; however, the usual DH approach can be
tended straightforwardly and yields explicit approximatio
for the internal energy~and, thence, results for other therm
dynamic properties!. This asymmetric DH~or ADH! theory
reproduces the limiting laws and provides the exact hi
temperature second-virial coefficients,B2,1 andB2,2 @see Eqs.
~2.25!–~2.27!#, down to the point-ion limit.

However, in contrast to the standard DH theory for t
symmetric restricted primitive model~RPM! with l
5a22 /a1151, the straightforward ADH theory violate
the ~extended! lower bound on the internal energy in th
coexistence region whenl.5. Even more seriously, fo
moderate asymmetries and moderate temperatures, the
charge in a ‘‘subborder’’ zone~that surrounds a1 ion! is pre-
dicted tochange signand, at lowT, to diverge; but, by con-
struction of the model, such behavior is physically impo
sible. This pathology is readily traced to use of the stand
DH linearization of the Boltzmann factor within the bord
zones: see Sec. II B. Modifications of the ADH theory a
thus essential for applications at lowT.

As shown in Sec. III, one may restore physically sensi
behavior while retaining the exact high-T behavior by intro-
ducing ‘‘border-zone factors,’’F ,(T) and F.(T), origi-
nally proposed in@17#. ~This also ensures that the ener
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bounds are no longer violated in the critical region and
yond.! The simplest such modification amounts to a me
field approach in which the Poisson-Boltzmann factors in
border zones~only! are merely replaced by theirT5` lim-
its, namely, unity. For a subborder zone~around a
smaller1 ion! a theoretically preferable approach, dubb
EXP,, replaces the self-consistent Poisson-Boltzmann fa
by a mean bare-interaction Boltzmann factor@or, better, lin-
earizes about such a mean value: see Eq.~3.10!#. A corre-
sponding exponential treatment of the superborder z
~around a negative ion! proves, however, more problemat
owing to physically crucial charge-saturation effects that
hard to elucidate in a precise way. One may expect that b
the mean-field and EXP, modifications of linear ADH
theory are most reliable at small degrees of asymmetry.

To explore the consequences of the simplest modi
mean-field and EXP,ADH theories~just sketched! we have
computed the predicted critical parameters as a function
the size-asymmetryl for 1:1 electrolytes@with additive in-
teractions,a125 1

2 (a111a22)#: see Fig. 4. Asl increases
from unity, the predictedTc* (l) and rc* (l) fall systemati-
cally within both of these modified ADH theories.@See Eqs.
~1.4! and ~1.5! for definitions of the reduced units.# These
decreases accord well with recent simulations@14,15#. On
the other hand, an original proposal by Debye and Hu¨ckel in
1923, that completely ignores the border zones~see Sec.
III C !, predicts diametricallyopposite trends. Furthermore
current, more sophisticated theories@12,13# make similarpre-
dictions of increasingTc* and rc* ~in addition to yielding
excessively large values ofTc* for the RPM@7,9#!.

We conclude that DH-based theories seem to extract
basic physics in a quantitatively more reliable way@7,9#,
even for size-asymmetric systems, than do potentially be
but physically less transparent approaches like the MSA.
still necessary, however@10#, to incorporate Bjerrum ion-
pairing and dipole-ion solvation@9# into the modified ADH
theories expounded here.~This will also increase the pre
dicted critical densities to better match the anticipated v
ues.! It is not obvious that the correct trends with asymme
~accepting the validity of the simulations@14,15#! will sur-
vive these extensions: it seems likely, nonetheless, that
proper dependence on asymmetry will be preserved~as sug-
gested, e.g., by comparing the results of@12# and @13#!.

From a broader perspective, it remains frustrating t
more powerful and definitive theoretical techniques have
yet been devised to aid in our understanding of such a f
damental and significant model for condensed matter.
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APPENDIX: ENERGY BOUNDS FOR THE TWO-SPECIES
PRIMITIVE MODEL

We here generalize the Onsager bound for the RPM@18#
to the general two-component hard-sphere model define
Sec. II and also develop an~apparently new! lower bound
that improves on the simple Onsager result.

The quantity to be bounded is theinteraction energy of
the ions,U int. Defining the interionic distancesr i j and inter-
action potentials,

w i j 5qiqj /Dr i j , ~A1!

whereqi is the charge on thei th ion, one has

U int5(
i , j

w i j . ~A2!

By adopting the 1/r i j form in Eq.~A1!, we implicitly assume
that the charge densities between any two ions are sp
cally symmetric and never overlap. To avoid irrelevant s
gularities, we further assume that the charge density is
erywhere finite, i.e., has been suitably ‘‘smeared’’
distributed.

Following Onsager@18#, consider thetotal electrostatic
energy,U tot, which, besides the interaction energy, also
cludes the self energies,ui

self, i.e., the energies required t
assemble the individual ions from an infinitely dispers
charge state of zero energy. As is well known~see, e.g.,
@21#!, the total energy may be expressed in terms of
electric fieldE as a positive definite quantity, namely,

U tot5(
i , j

w i j 1( ui
self5

1

8p E d3r uEu2.0. ~A3!

Note that the smeared charge distributions are assume
guarantee the finiteness ofU tot.
I

01120
e
s

in

ri-
-
v-

-

e

to

1. Generalisation of the Onsager bound

The Onsager bound for the RPM and its direct gener
zation follow easily from~A3!. Rearrangement leads to

(
i , j

w i j >2 (
i

ui
self. ~A4!

This inequality holds forarbitrary charge distributions obey
ing the restrictions stated above; different distributions,
course, lead to different values ofui

self. To obtain the stron-
gest bound, we mustminimize the magnitudes of the sel
energies. This is accomplished by dispersing the ionic cha
as much as possible, namely, by placing it in a thin shell
the surface of the largest permissible sphere~of diameter
amax!. Considering a vanishingly thin shell, the minimal se
energy is thus

min$ui
self%5qi

2/Dai
max. ~A5!

For the symmetric RPM, the equality of charges,q1

52q2[q, and of sizes,ai
max[a12[a, immediately leads

to the original Onsager boundq2/Da. In the case of nonad
ditivity, however, one must avoid overlapping charge dis
butions from distinct ions, so that

ai
max5min$a12 ,aii %. ~A6!

We now formulate the explicit Onsager bound. First, d
fining z5uz1/z2u, note that the total numbers of particles
each species are

N15N/~11z! and N25zN/~11z! .

Recalling the definition of reduced energy~1.6! and using
the constraint of overall charge neutrality, one finds t
bound

u~r,T!>uOns52
z~a/a1

max!1~a/a2
max!

11z
. ~A7!

For the size-symmetric case, wherea1
max5a2

max5a, the
charge asymmetry does not affect the bound in these red
units, so thatu(r,T)>uOns521. If we separate the thre
basic size asymmetry cases, the result translates into
uOns
I 52@z/~11d1!~11z!11/~11d2!~11z!#, for a11, a22,a,

uOns
II 52@z/~11d1!~11z!11/~11z!#, for a11,a,a22,

uOns
III 521, for a,a11, a22. ~A8!
del
an
o-

of
Note that the strongest bound is21, which obtains for
Case III, when both the like diameters exceeda; this matches
the RPM result. On the other hand,uOns is weaker in Cases
or II, since the bound can then diverge to2` when ds→
21 ~or, equivalently, asass→0!. Physically, shrinking the
like diameters~but keepinga12 positive! should not de-
crease the energy: thus a stronger bound is desirable.
2. Improved bound

To do better we compare the two-species primitive mo
with another model whose energy can be bounded by
Onsager construction, specifically, an interpenetrating, tw
speciesshellmodel, consisting of a charge-neutral mixture
uniformly surface-charged spheres of total chargesqi
5z1q0 or z2q0 and equal diametersa, but withno hard-core
6-11
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constraint. The shell diametera will be identified witha12

for the primitive models. The interaction potential is d
scribed further below.

Since the configuration space of the primitive model—
terms of ion-center locations—is a subset of the space of
shell model, any ground-state configuration of the primit
model of energy, say,U0

int , is present in the shell model wit
energy, say,U1

int , which cannot be lower than the she
model ground state, say,U0,S

int . Thus, if we can establish

U0
int>U1

int ~A9!

and also show thatU0,S
int is bounded below, we will obtain a

lower bound onU int, as desired.
We may construct the interaction potential of the int

penetrating shell model, sayw̃ i j ~which does not behave a
1/r i j at all separations!, as the difference between the tot
energy of a two-particle system and the sum of the two
energies. Thus ifr̂k(r ;r k) represents the charge distributio
of a shell ionk centered atr k , and

r̂~r ![r̂ i~r ;r i !1 r̂ j~r ;r j ! ~A10!

is the total charge density for two ions, the interaction pot
tial follows from

w̃ i j 1
qi

2

Da
1

qj
2

Da
5

1

8p E d3r uEu25 1
2 E d3r r̂~r !f~r !,

~A11!

whereE(r ;r i ,r j ) andf(r ;r i ,r j ) are the total field and elec
trostatic potential. If we now definefk(r ;r k) to be the elec-
trostatic potential resulting from an isolated shell ionk at r k ,
we have

1
2 E d3r r̂k~r ;r k!fk~r ;r k!5

qk
2

Da
. ~A12!

Then, using the linearity of the charge density and poten
the relation~A11! may be simplified to yield

w̃ i j [w̃~r i j !5 1
2 E d3r @ r̂ i~r ;r i !f j~r ;r j !1 r̂ j~r ;r j !f i~r ;r i !#.

~A13!

To compare the energy of an arbitrary primitive-ion co
figuration with that of the corresponding shell-ion configu
tion in order to establish Eq.~A9!, we observe first that be
cause of the pairwise additivity of the interaction ener
~A2!, one need analyze only two shell ions of the sa
charge thatoverlap. To see this, note that all~1,2! ion pairs
in a primitive model are separated by distance not less t
a125a, which is the same diameter as that of the shell io
Thus, oppositely charged shell ions that correspond t
primitive ion configuration never overlap. The only diffe
ences arise when, in the primitive ion system, one or both
the like diameters,ass , are smaller thana. This will allow
overlapping shells in the corresponding shell configuratio
If a11 and a22 exceeda, the energy of correspondin
primitive and shell configurations will always be identical
01120
e

-

lf

-

l,

-
-

e

n
.
a

f

s.

Consider then, for concreteness, two positive overlapp
shells, separated by a distancer 11 , with a11,r 11,a;
see Fig. 5. We want to show that the interaction energy
this pair, w̃(r 11), is less than that for the correspondin
nonoverlapping primitive ions which is simplyq1

2 /Dr 11 .
By symmetry the two terms in Eq.~A13! are now identi-

cal. Thus, consider the charge distribution of the right-ha
shell in Fig. 5 in the potential of that on the left; the righ
hand distribution divides naturally into the two parts show
in the figure: a part exterior to the left-hand shell~bold! and
an interior part~dashed!. If r l denotes the position of the
left-hand ion, the resulting potential at an exterior point,r.,
is simplyq1 /ur l2r.u ~because these points ‘‘see’’ a sphe
cally symmetric left-hand charge distribution!. Conversely,
interior points, such asr,, experience only theconstant
electrostatic potentialq1 /(a/2). This is clearlyless thanthe
potential they would experience were all the left-hand cha
distributed on the smaller primitive ion sphere with the sa
centerr l . Consequently, overlapping like-charged shell io
have asmaller interaction potential than the correspondin
primitive ions with the same centers. This establishes
bound~A9!.

To obtain a lower bound for the shell model itself, rec
Eqs.~A3! and~A10! and bound the total energy of any she
configuration as

Us
tot5

1

8p E d3r uEu25 1
2 E d3r r̂~r !f~r !.0, ~A14!

where the total shell charge density,r̂(r ) can be expressed in
the form ~A10! but with a sum extending over all the she
ions. The total electrostatic potential,f(r ), can be decom-
posed similarly, yielding

1
2 E d3r r̂~r !f~r !5 1

2 E d3r @ r̂1~r !1¯1 r̂N~r !#

3@f1~r !1¯1fN~r !#. ~A15!

Finally, by combining the previously defined shell se
energies~A12! and interaction potentials in Eq.~A13!, the
inequality ~A14! may be rearranged to give

FIG. 5. Two overlapping shell ions, with corresponding har
core primitive ions~dotted!, which are smaller but concentric. Th
shell diametera is identified witha12 of the primitive models.
6-12
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US
int

N
5

1

N (
i , j

w̃ i j >
U0,S

int

N
>2

1

N S N1q1
2

Da
1

N2q2
2

Da D
52

uq1q2u
Da

. ~A16!

The bound on the primitive model is now completed
combining this with Eq.~A9!. In terms of the reduced energ
. E

s.

01120
per particle~1.6!, the result may be written as

u~r,T!>21. ~A17!

Note that the positive definite collision diameter,a12[a,
and the valencieszs do not appear explicitly here since the
enter into the definition~1.6!. Sincea11 anda22 are also
absent, the bound remains valid for point ions (ass→0).
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